

Journal Homepage: -www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

Article DOI:10.21474/IJAR01/8573 **DOI URL:** http://dx.doi.org/10.21474/IJAR01/8573

RESEARCH ARTICLE

THE EFFECT OF FINANCIAL PERFORMANCE OF SOPPENG REGENCY GOVERNMENT ON COMMUNITY PROSPERITY LEVEL.

Darmawati Aras¹, Abdu Hamid Habbe² and Arifuddin².

- 1. Master of Accounting Depatrtment, Faculty of Economics and Bussiness, HasanuddinUniversity.
- 2. Faculty of Economics and Bussiness, Hasanuddin University.

Manuscript Info

Manuscript History

Received: 14 December 2018 Final Accepted: 16 January 2019 Published: February 2019

Key words:-

Independence ratio, effectiveness ratio, budget absorption ratio, compatibility ratio, community prosperity.

Abstract

The research aimed to perceive the regional autonomy implementation at Soppeng Regency by investigating: 1) whether the financial independence level through the expenditure compatibility and budget absorption could improve the community prosperity; 2) whether the effectiveness level of the Regional Original Revenue (ROR) through the expenditure compatibility and budget absorption could improve the community prosperity.

.....

The research used the quantitative approach the time series as the secondary data for ten years (from 2007 to 2016). Data were analysed using the path analysis to find out the effect of the independent variable on the dependent variabel with the significance level of 5%. The research data were analysed using Eviews.

The research result indicates that the financial independence throught the expenditure compatibility and budget absorption has the positive and significant relationship with IPM, however, the effectiveness of ROR through the expenditure compatibility and budget absorption has the positive and insignificant relationship with IPM. This also indicates that the regional autonomy implementation at Soppeng Regency has not fully fulfilled the mandate of autonomy acts which is expected to be able to optimize the economic potentials in order to improve the community prosperity.

Copy Right, IJAR, 2019,. All rights reserved.

Introduction:-

Indonesia changed their policy into regional autonomy when Act 22 of 1999 changed to Act 32 of 2004, later changed to Act 23 of 2014 on Regional Government, and Act 25 on 1999 later changed to Act 33 of 2004 on Monetary Balancing between Central and Regional Government. With the enactment of regional autonomy, regional developments need to be carefully planned. This can be achieved by a careful development budgeting planning and supported with a well-managed regional income. Regional autonomy and fiscal decentralization are enacted by considering that regional governments are more aware with the needs and standards of service of their peoples. Therefore, regional autonomy is hoped to improve people' welfare through the improvements of local economy as reflected in ProdukDomestik Regional Bruto (PDRB).

One of few measurement means that could analyze governments' performance in managing their regional budget is by employing monetary ratio analysis on the specified and implemented APBD (Halim, 2007:231). Some monetary

Corresponding Author:-Darmawati Aras.

Address:-Master of Accounting Department, Faculty of Economics and Bussiness, HasanuddinUniversity.

ratios used to measure the accountability of regional government are independent ratio, regional income effectiveness ratio, regional budget efficiency ratio, and expenditure conformity ratio. In addition, United Nations Development Program (UNDP) measure people' welfare comprehensively by calculating income per capita, life expectancy, educational level which are constructed into Human Development Index.

Empiric studies on regional monetary performance is common in Indonesia, some are intended to evaluate the monetary performance of regional government. This indicated a huge concern on the quality of regional institution performance, especially in their service.

Analysis of Hendarmin (2012) in Kalimantan Barat on the influence of capital expenditure and private investment on economic growth, work opportunities, people welfare concluded that generally welfare could be improved by improving capital expenditure, that broaden work opportunities and eventually improving people welfare.

Study conducted by Swandewi (2014) proved that regional monetary independency indirectly have a significant effect on people welfare through budget conformity. Regional government independency ratio reflected regional autonomy capability that is measured by the amount of PendapatanAsli Daerah (PAD) compared to total regional income. This result is problematic; independent regency could improve their capital expenditure in exchange for public service. Ardhini (2012) proved that regional income effectiveness ratio positively influencing capital expenditure allocation addressed to public service. Therefore, if regional monetary tends to be effective, it would affect capital expenditure spend on public service. Study conducted by Wahyudi and Rejekiningsih (2013) found that government spending on healthcare and education affect economic growth and poverty. However, Vegirawati (2012) found that direct spending could not predict Human Development Index.

Mirza (2012) proved that capital expenditure could improve Human Development Index. Capital expenditure conformity on APBD realization showed that government is concerned with regional development. Regional government monetary performance is hoped to be more concerned with people needs.

From the statement above, the researcher is interested to explore how monetary performance of KabupatenSoppeng affects people welfare. This study is intended to measure the achievement level of KabupatenSoppeng government in fulfilling the main objective of regional autonomy that is to ensure the wellbeing of people through an effective and efficient APBD management.

Research Methodology:-

Research Planning

This study employed quantitative approach. This study is a hypothesis testing, intended to analyze the correlation between regional monetary performance and people welfare. This study is a case study. During observation, a time-series secondary data was employed.

Location and Time

This study was conducted in KabupatenSoppeng, specifically at Regional Government of KabupatenSoppeng and focused to Monetary Report. Study time was scheduled based on situation and condition of study location.

Population and Sample

The population of this study is regional monetary report audited by BPK and it was enacted as PerdaKabupatenSoppeng. Monetary report used is APBD realization report of 2007-2016. HDI data is also taken from similar timespan.

Data Source and Type

Quantitative data is used in this research. The source of data is secondary data collected from Accountancy Board of Regional Equipment and Finance Office of KabupatenSoppeng. Data on people welfare is collected from BPS KabupatenSoppeng and Regional Development Planning Board (Bappeda) KabupatenSoppeng as cited in "Soppeng in Angka" book.

Data Collection Method

Methods employed in this research are documentation and literature. Data collected are thos related with regional monetary performance ratio calculation and welfare available in BPS office and Bappeda.

Research Variables

This study is comprised of two independent variables, two intervening variables, and one dependent variable. Monetary performance is reflected on independent variables that are Monetary Independency Ratio, PAD Effectiveness Ratio. Intervening variables are Budget Absorption Ratio, Expenditure Conformity Ratio. Dependent variables consisted of People Welfare reflected on IPM (Income per Capita, Education and Healthcare Indicator)

Data Analysis Technique:-

Path analysis is employed in this study, with regression equation as follows:

First Analysis, to test the influence of independent variables $(X_1 \text{ and } X_2)$ on intervening variables $(X_3 \text{ and } X_4)$, illustrated as:

Figure 4.2
Effect of Independent Variables on Intervening Variables

Information:

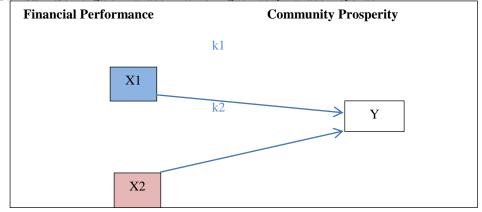
a = the constant effect X_1 and X_2 on X_3

 a_1 = the effect X_1 on X_3

 a_2 = the effect X_2 on X_3

b = the effect constant X_1 and X_2 on X_4

 b_1 = the effect X_1 on X_4


 b_2 = the effect X_2 on X_4

 e_1 = standard error of effect of X_1 and X_2 on X_3

 e_2 = standard error of effect of X_1 and X_2 on X_4

Second Analysis, to understand the influence of intervening variables $(X_3 \text{ and } X_4)$ on dependent variable (Y), illustrated as:

Gambar 4.3:-PengaruhVariabel Intervening terhadapVariabelDependen

Equation:

 $Y_{(tn+1,2,3,4)} = k + k_1.X_{3(tn)} + k_2.X_{4(tn)} + e_3$

Information:

k =the constant effect X_3 and X_4 on Y_1

 k_1 = the effect X_3 on Y k_2 = the effect X_4 on Y

 e_3 = standard error of effect of X_3 and X_4 on Y_1

Result:-

Data Description

Independent variables consisted of Independency Ratio and Effectiveness Ratio as collected from 2007-2016 as follows:

Independence Ratio & Effectiveness Ratio

No.	Year	Independent	Variables
		Independence Ratio	Effectiveness Ratio
		X1	X2
1	2007	4,25	106,82
2	2008	4,09	130,12
3	2009	3,62	89,28
4	2010	3,39	80,95
5	2011	3,73	112,34
6	2012	4,24	107,85
7	2013	5,56	116,69
8	2014	7,71	120,13
9	2015	7,12	117,96
10	2016	8,10	109,41
	Mean	1.593.481	4.684.104
N	Median	1.445.666	4.708.331
Ma	aximum	2.091.948	4.868.449
M	inimum	1.219.830	4.393.771
St	d. Dev.	0.331565	0.141824
Pro	obability	0.485543	-0.946898

Source: Data Processed

Intervening variables consisted of Expenditure Conformity Ratio and Budget Absorption Ratio as collected from 2007-2016 as follows:

Expenditure Conformity Ratio & Budget Absorption Ratio

No.	Years	Intervening variables		
		Expenditure Conformity Ratio	Budget Absorption Ratio	
		Х3	X4	
1	2007	62,16	90,57	
2	2008	62,32	91,01	
3	2009	58,47	98,46	
4	2010	48,51	96,59	
5	2011	53,16	94,32	
6	2012	40,48	92,89	
7	2013	43,77	92,64	
8	2014	51,11	94,88	
9	2015	56,43	92,66	
10	2016	58,82	90,88	
N	Mean	49.99073	3.970.679	
M	Iedian	49.40616	4.003.139	

Maximum	83.03544	4.132.275
Minimum	28.87895	3.700.914
Std. Dev.	16.21263	0.146964
Probability	0.761934	-0.623318

Source: Data Processed

Dependent variable consisted of Human Development Index (HDI) in Soppeng Regency as collected from 2007-2016 as follows:

Human Development Index

No.	Year	Dependent Variables	
		HDI	
		Y	
1	2007	62,45	
2	2008	62,92	
3	2009	63,10	
4	2010	63,51	
5	2011	63,80	
6	2012	64,05	
7	2013	64,43	
8	2014	64,74	
9	2015	65,33	
10	2016	65,95	
	Mean	4.159.187	
	Median	4.157.709	
N	Maximum	4.188.897	
N	Minimum	4.134.366	
S	Std. Dev.	0.017194	
P	robability	0.279716	

Source: BPS of Soppeng Regency (2018)

Result of Influence of Independent Variables on Intervening Variables

The result of statistic test on Independency Ratio and Effectiveness Ratio variables on Expenditure Conformity Ratio illustrated below:

The Effect X₁ and X₂ on

The Little M und M on						
Date: 08/29/18 Time: 05:07						
Sample: 2007 2016	Sample: 2007 2016					
Included observations: 10						
Family: Normal						
Link: Identity						
Dispersion computed using Pearson	Chi-Square					
Convergence achieved after 1 iterati	Convergence achieved after 1 iteration					
Coefficient covariance computed us	Coefficient covariance computed using observed Hessian					
Variable	Coefficient	Std. Error	z-Statistic	Prob.		
X1	2.188446	0.987685	2.215732	0.0267		
X2	0.013765	0.173992	0.079110	0.9369		
С	71.57516	21.04659	3.400796	0.0007		
Mean dependent var	95.91730	S.D. dependent var		25.82611		

Sum squared resid	3469.020	Log likelihood -43.	
Akaike info criterion	9.343594	Schwarz criterion	9.434370
Hannan-Quinn criter.	9.244014	Deviance	3469.020
Deviance statistic	495.5742	Restr. deviance 600%	
LR statistic	5.113001	Prob(LR statistic)	0.077576
Pearson SSR	3469.020	Pearson statistic 49	
Dispersion	495.5742		

Source: The Result of Statistical Test (Eviews Version 7)

The figure showed the result of equation X3 = a + a1.X1 + a2X2 + e1 with regression equation:

X3 = 71.57516 + 2.18446 + 0.013765 + e

Probability value of each variable X1 on variable X3 showed a significant value of \leq 5% with probability value of 0,0267, whilst variable X2 on variable X3 showed an insignificant value of \geq 5% with probability value of 0,9369, exceeding the required probability value. This indicated that Independency Ratio significantly influences Expenditure Conformity Ratio, in contrast with Effectiveness Ratio which insignificantly influences Expenditure Conformity Ratio. This might be caused by the fluctuating tendency of Effectiveness Ratio compared to the linier tendency of Expenditure Conformity Ratio. In addition, the population which only limited to one government body with 10 years data could influence the significant value of each relationship.

The result of statistic test on Independency Ratio and Effectiveness Ratio variables on Budget Absorption Ratio illustrated below:

The Effect X_1 and X_2 on X_4

Dependent Variable: X4						
Method: Generalized Linear Model (Quadratic Hill Climbing)						
Date: 08/29/18 Time: 05:08						
Sample: 2007 2016						
Included observations: 10						
Family: Normal						
Link: Identity						
Dispersion computed using Pears						
Convergence achieved after 1 ite						
Coefficient covariance computed	using observed Hess	ian				
Variable	Coefficient	Std. Error	z-Statistic	Prob.		
****	2.50.00.0	1 222 120	2 00021 7	0.02.50		
X1	2.763606	1.323430	2.088215	0.0368		
X2	-0.251348	0.233137	-1.078117	0.2810		
С	60.08211	28.20097	2.130498	0.0331		
	44.00.70			24.24002		
Mean dependent var	61.89530	S.D. dependent var		34.31902		
Sum squared resid	6228.326	Log likelihood		-46.64415		
Akaike info criterion	9.928830	Schwarz criterion		10.01961		
Hannan-Quinn criter.	9.829249	Deviance		6228.326		
Deviance statistic	889.7609	Restr. Deviance		10600.15		
LR statistic	R statistic 4.913487 Prob(LR statistic)			0.085714		
Pearson SSR	6228.326	Pearson statistic		889.7609		
Dispersion	889.7609					

Source: The Result of Statistical Test (Eviews Version 7)

The figure showed the result of equation X4 = b + b1.X1 + b2X2 + e1 with regression equation:

X4 = 60.08211 + 2.763606 - 0.251348 + e

Probability value of each variable X1 and X2 on variable X4 with significance level of 5% (0,05) showed that X1 significant on 0,0368 with z-Statistic value of 2.088215, shills X2 is insignificant on 0,2810 with z-Statistic value of -1,07817. From the equation above, it can be concluded that for every 1% increase of Independency Ratio, Budget Absorption Ratio will increase 2,76% and Expenditure Conformity Ratio will be set on constant level of 60,08% without the influence of either Independency Ratio or Effectiveness Ratio.

Result of Influence of Intervening Variables on Dependent Variable

Relationship between Expenditure Conformity and Budget Absorption Ratios on IPM is significant on Y1(tn+1) test illustrated as:

The Effect X₃ and X₄ on Y

The Effect A ₃ and A ₄ on 1						
Dependent Variable: Y						
Method: Generalized Linear Model (Quadratic Hill Climbing)						
Date: 08/29/18 Time: 05:10						
Chi-Square						
ion						
sing observed Hessian	1					
Coefficient	Std. Error	z-Statistic	Prob.			
0.035291	0.017337	2.035604	0.0418			
0.028880	0.013047	2.213585	0.0269			
59.29215	1.945923	30.46995	0.0000			
64.46470			1.755487			
12.56697			-15.61519			
	Schwarz criterion		3.813814			
3.623458	Deviance		12.56697			
1.795281	Restr. Deviance		27.73563			
8.449185	Prob(LR statistic)		0.014631			
12.56697	Pearson statistic		1.795281			
1.795281						
			•			
	Chi-Square ion Sing observed Hessian Coefficient 0.035291 0.028880 59.29215 64.46470 12.56697 3.723039 3.623458 1.795281 8.449185 12.56697	Chi-Square	Chi-Square			

Source: The Result of Statistical Test (Eviews Version 7)

The illustration showed the result of statistic test with equation Y1 = k + k1.X3 + k2.X3 + e with regression equation:

Y1(tn+1) = 59.29115 + 0.035291X3 = 0.028880X4 + e

From the equation, it can be explained that for every 1% increase of Expenditure Conformity Ratio, HDI will increase 0.0289%. HDI will be set on 59,29% without the influence of Expenditure Conformity Ratio and Budget Absorption Ratio.

Probability values of each variable X3 and X4 on variable Y with on significance level of 5% (0,05) showed that X3 gave positive and significant influence on Y with 0,0418 with t-Statistic value of 2.035604. Similar result on X5 showed significant influence on Y with probability value of 0.0269 with t-Staistic 2.213585.

Discussion:-

The Influence of Independency Ratio through Expenditure Conformity on People Welfare

This study found that correlation coefficient of Independency Ratio (X1) through Expenditure Conformity Ratio (X3) on HDI (Y) showed positive and significant influence, meaning that H1 is accepted. The result strengthens

Mirza's (2012) findings that economic growth has positive and significant impact on Human Development Index (HDI) of Government of Jawa Tengah. Moreover, Swandesi (2014) proved that regional monetary independency indirectly have positive and significant influence on people welfare through expenditure conformity in Bali. However, this study differs with study conducted in Sumatera Selatan by Vegirawati (2012) that found that expenditure could not predict Human Development Index.

The Influence of Independency Ratio through Budget Absorption on People Welfare

Correlation coefficient of Independency Ratio (X1) through Budget Absorption Ratio (X4) on HDI (Y) showed positive and significant influence, meaning that H2 is accepted. The result strengthens Mirza's (2012) findings that economic growth has positive and significant impact on Human Development Index (HDI) in Jawa Tengah. However, the findings are different compared to Vegirawati (2012) who found that expenditure could not predict Human Development Index.

The Influence of PAD Effectiveness through Expenditure Conformity on People Welfare

Correlation coefficient of Effectiveness Ratio (X2) through Expenditure Conformity (X3) on HDI (Y) showed positive but insignificant influence, meaning that H3 is rejected. The result generally showed that PAD effectiveness through expenditure conformity could not increase people welfare. Regional capability to optimize regional monetary potency is low therefore PAD targets set on APBD are still far from realization. Therefore, even if PAD realization peaked at 100% or more, it did not show the real performance. As conducted by Saputra (2014) in Sumatera Barat, PAD realization effectiveness tends to improve annually, yet it could not reduce the financial transfer from central government. This showed that regional monetary performance as measured by PAD realization effectiveness did not illustrate regional capabilities in managing their economic activity sources. Ideally, PAD targets draw the real potential and therefore PAD realization could picture the ongoing economic activities.

The Influence of PAD Effectiveness through Budget Absorption on People Welfare

Correlation coefficient of Effectiveness Ratio through Budget Absorption Ratio on HDI showed positive but insignificant influence, meaning that H4 is rejected. The result showed that regional monetary independency through budget absorption could improve people welfare. This discovery is against what Adrhini and Handayani (2012) found that PAD Effectiveness Ratio in regional monetary management had positive and significant influence on capital expenditure allocated to people welfare. Therefore, if regional monetary effectiveness tends to be effective, it could influence the amount of capital expenditure spend on people welfare. Mirza (2012) proved that capital expenditure enacted by government had positive and significant influence on HDI.

Conclusion And Suggestions:-

Monetary performance of a particular year significantly contributes to people welfare of the following year:

- 1. Monetary Independency Ratio through Expenditure Conformity Ratio could improve people welfare in KabupatenSoppeng in every indicator.
- 2. Independency Ratio through Budget Absorption Ratio could improve people welfare in KabupatenSoppeng in every indicator.
- 3. Effectiveness Ratio through Conformity Ratio and Budget Absorption Ratio could not improve people welfare in KabupatenSoppeng in every indicator.
- 4. Effectiveness Ratio through Conformity Ratio and Budget absorption Ratio could not improve people welfare in KabupatenSoppeng in every indicator.

It is suggested to future researchers interested with this topic to increase data population. This could be done by adding research locations. This could also act as comparison between regions.

Acknowledgments:-

For the completion of this research, the researcher would thank all parties involved in this study: Prof. Dr. Dwia Aries Tina Pulubuhu, MA, rector of UniversitasHasanuddin for the chance given to study in Accountancy Program at Faculty of Economy and Business, National Government Internal Auditor and ADB that provide the researcher with scholarship. Prof. Dr. Abd.RahmanKadir, SE., M.Si dean of Faculty of Economy and Business, Dr. R.A. Damayanti, SE., AK.,M.Soc.,Sc.,CA head of Accountancy Program for the chance given to study here, Dr. Abdul Hamid Habbe, SE.,M.Si as First Consultant and Dr. Arifuddin, SE.,Ak.,M.Si.,CA as Second Consultant for their guidance and knowledge in completing this thesis.

Daftar Pustaka:-

- Ardhini dan Sri Handayani, 2012. Pengaruh Rasio Keuangan Daerah Terhadap Belanja Modal untuk Pelayanan Publik dalam Perspektif Teori Keagenan (Studi pada Kabupaten dan Kota Di Jawa Tengah). Tidak dipublikasikan.
- 2. Arsyad, Lincolin. 2010. Ekonomi Pembangunan. CetakanPertama. Yogyakarta: UPP STIM YKPN.
- 3. Astri, M., Nikensari, S.I., danKuncara, H. 2013.PengaruhPengeluaranPemerintah Daerah padaSektorPendidikandanKesehatanTerhadapIndeks Pembangunan Manusia.JurnalPendidikanEkonomi Dan Bisnis. Vol. 1 No. 1.
- 4. Batafor, GregoriusGehi. 2011. EvaluasiKinerjaKeuangandan Tingkat KesejahteraanMasyarakatKabupatenLembata Provinsi NTT.Tesis Program PascaSarjana.Denpasar.
- 5. Budiarto, Arif. 2007. Jasa-jasa Audit.Jakarta:SalembaEmpat.
- 6. Devas, Nick, dkk. 1989. KeuanganPemerintah Daerah di Indonesia. Jakarta: UI Press.
- 7. Fahmi, Irham. 2010. ManajemenKinerja: TeoridanAplikasi. Bandung: Alfabeta.
- 8. Fahmi, Irham. 2011. AnalisisKinerjaKeuangan. CetakanKesatu. Bandung: Alfabeta.
- 9. Halim, Abdul. 2007. AkuntansiSektorPublik: AkuntansiKeuangan Daerah. Jakarta: SalembaEmpat.
- 10. Hasanah, E.U., danSunyoto, D. 2012. PengantarIlmuEkonomiMakro. CetakanPertama. Yogyakarta: CAPS.
- 11. Hendarmin. 2012. PengaruhBelanja Modal Pemerintah Daerah danInvestasiSwastaterhadapPertumbuhanEkonomi, KesempatanKerjadanKesejahteraanMasyarakat di Kabupaten/Kota Provinsi Kalimantan Barat. JurnalEksos. Vol. 8 No. 3.
- 12. Jhingan, M.L. 1979. Ekonomi Pembangunan danPerencanaan.Penerjemah: D. Guritno. CetakanKeempatBelas. Jakarta: RajaGrafindoPersada.
- Mahmudi. 2006. AnalisisLaporanKeuanganPemerintah Daerah. EdisiKedua. CetakanPertama. Yogyakarta: UPP STIM YKPN.
- 14. Mahmudi. 2009. ManajemenKeuangan Daerah. Jakarta: Erlangga.
- 15. Mamesah, D.J. 1995. SistemKeuangan Daerah. Jakarta: PT. GramediaPustakaUtama.
- 16. Mardiasmo. 2002. OtonomidanManajemenKeuangan Daerah. Yogyakarta: Andi.
- 17. Mirza, DenniSulistio. 2012. PengaruhKemiskinan, PertumbuhanEkonomi, danBelanja Modal TerhadapIndeks Pembangunan Manusia di Jawa Tengah Tahun 2006-2009. Economics Development Analysis Journal.EDAJ 1 (1).
- 18. Nordiawan, DeddidanAyuningtyasHertianti. 2010. AkuntansiSektorPublik. EdisiKedua. Jakarta: SalembaEmpat.
- 19. Rinaldi, Udin. 2012. Kemandirian Keuangan Dalam Pelaksanaan Otonomi Daerah. Jurnal Eksos. Vol. 8 No. 2.
- 20. Saputra, Dori. 2014. AnalisisKemandiriandanEfektivitasKeuangan Daerah PadaKabupatendan Kota di Propinsi Sumatera Barat.ArtikelIlmiah. UniversitasNegeri Padang.
- 21. Sugiyono. 2014. MetodePenelitianKuantitatif, Kualitatifdan R&D. Cetakan ke-20. Bandung: Alfabeta.
- 22. Sukirno, S. 2006. Ekonomi Pembangunan: Proses, Masalah, danDasarKebijakan. EdisiKedua. Jakarta: Penerbit: KencanaPrenadamedia Group.
- 23. Suliswanto, M.S.W. 2010.PengaruhProdukDomestikBruto (PDB) danIndeks Pembangunan Manusia (IPM) terhadapAngkaKemiskinan di Indonesia. JurnalEkonomi Pembangunan. Vol. 8 No. 2.
- 24. Swandewi, AnakAgungIstriAgung. 2014. Pengaruh Dana PerimbangandanKemandirianKeuangan Daerah terhadapKeserasianAnggarandanKesejahteraanMasyarakatpadaKabupaten/Kota di Provinsi Bali. E-JurnalEkonomidanBisnisUniversitasUdayana 3.7.
- 25. Swasono, Sri Edi. 2005. Indonesia danDoktrinKesejahteraanSosial. Jakarta: Perkumpulan Prakarsa.
- 26. Syafii, Achmad. 2009. PengaruhInvestasiFisikdanInvestasi Pembangunan ManusiaTerhadapPertumbuhanEkonomiJawaTimur 1990-2004.Journal of Indonesian Applied Economics.Vol. 3 No. 1.
- 27. Todaro, Michael P. dan Stephen C. Smith. 2006. Pembangunan Ekonomi. AlihBahasa: MunandardanPuji. Jakarta: Erlangga.
- 28. Vegirawati, Titin. 2012. PengaruhAlokasiBelanjaLangsungTerhadapKualitas Pembangunan Manusia. JurnalEkonomidanInformasiAkuntansi. Vol. 2 No.1
- 29. Wahyudi, D., danRejekingsih, T.W. 2013. Analisis Kemiskinan di Jawa Tengah. Diponegoro Journal of Economics. Vol. 2 No.1.
- 30. Wahyuni I.G.A.P., Sukarsa, M., danYuliarmi, M. 2014.PengaruhPengeluaranPemerintahdanInvestasiTerhadapPertumbuhanEkonomidanKesenjanganPendapatan Kabupaten/Kota di Provinsi Bali.E-JurnalEkonomidanBisnisUniversitasUdayana 3.8.

- 31. Widodo, A., Waridin, dan Maria, J. 2011.AnalisisPengaruhPengeluaranPemerintah di SektorPendidikandanKesehatanTerhadapPengentasanKemiskinanMelaluiPeningkatan Pembangunan Manusia di ProvinsiJawa Tengah.JurnalDinamikaEkonomi Pembangunan. Vol. 1 No. 1.
- 32. Undang-UndangNomorNomor 17 Tahun 2003 tentangKeuangan Negara.
- 33. Undang-UndangNomor 25Tahun 1999 tentangPerimbanganKeuanganantaraPemerintahPusatdan Daerah.
- 34. Undang-UndangNomor 1 Tahun 2004 tentangPerbendaharaan Negara.
- 35. Undang-UndangNomor 32 Tahun 2004 tentangPemerintahanDaerah.
- 36. Undang-UndangNomor 33 Tahun 2004 tentangPerimbanganKeuanganPusatdanDaerah.
- 37. PeraturanPemerintahNomor 58 Tahun 2005 tentangPengelolaanKeuangan Daerah.
- 38. Peraturan Menteri Dalam negeri Nomor 13 Tahun 2006 tentang Pedoman Pengelolaan Keuangan Daerah.
- 39. PeraturanPemerintahNomor 71 Tahun 2010 tentangStandarAkuntansiPemerintahan.
- 40. Undang-UndangNomor 23 Tahun 2014 tentangPemerintahanDaerah.
- 41. http://pomphy.blogspot.com/2008/11/konsep-keuangan-daerah.html
- 42. http://www.kemenkeu.go.id/Berita/pemerintah-siapkan-langkah-langkah-dorong-percepatan-penyerapan-anggaran

Attachment Attachment of Descriptive Analisys Research Variable

	Local Revenue	Realization of Local	Revenue of	Revenue of	The budget
	Budget	Revenue	Transfer	Debt	Expenditure
2007	14.810.965.660,	15.821.801.661,30	372.661.488.02	-	402.337.049.364,
	00		3,00		00
2008	13.419.093.406,	17.460.780.983,52	426.600.680.43	-	497.316.132.764,
	00		1,00		51
2009	18.038.539.916,	16.104.247.623,05	445.061.287.07		496.917.080.920,
	00		5,00		00
2010	20.423.023.061,	16.531.437.645,61	488.140.888.88	-	497.206.413.498,
	00		2,14		00
2011	19.183.910.487,	21.551.766.287,81	577.771.701.92	-	593.392.087.117,
	00		7,68		00
2012	24.010.110.952,	25.894.588.261,47	610.184.745.01	-	646.091.744.287,
	00		4,06		00
2013	34.359.972.000,	40.096.283.908,94	721.603.382.47	-	800.900.670.667,
	00		9,31		00
2014	50.400.012.080,	60.544.221.463,67	785.690.601.33	-	887.152.936.598,
	00		7,87		00
2015	57.986.825.109,	68.403.420.035,55	960.657.598.77	-	1.076.441.762.77
	00		2,36		6,00
2016	83.286.049.912,	91.123.526.502,24	1.124.887.222.1	-	1.320.871.298.37
	00		17,50		0,00
Mean	3.36E+10	3.74E+10	6.51E+11	NA	7.22E+11
Median	2.22E+10	2.37E+10	5.94E+11	NA	6.20E+11
Maxim	8.33E+10	9.11E+10	1.12E+12	NA	1.32E+12
um					
Minim	1.34E+10	1.58E+10	3.73E+11	NA	4.02E+11
um					
Std.	2.31E+10	2.69E+10	2.47E+11	NA	2.97E+11
Dev.					
Skewn	1.107154	0.935528	0.718362	NA	0.873012
ess					

Kurtosi	2.994305	2.446857	2.367388	NA	2.597279
S					

Realization of Expenditure	Capital Expenditure	Direct expenditure	HDI
364.407.462.557,39	115.557.711.848,00	185.901.920.707,20	62,45
452.621.168.584,00	135.954.041.254,00	218.156.302.426,00	62,92
489.255.660.055,00	132.710.582.437,00	226.990.251.654,00	63,10
480.231.036.478,00	77.302.748.566,00	159.354.010.744,00	63,51
559.680.174.950,00	111.146.742.884,00	209.075.848.225,00	63,80
600.139.911.637,46	78.923.645.829,00	194.948.902.694,00	64,05
741.943.967.305,40	123.884.355.154,00	283.024.467.295,00	64,43
841.739.144.164,00	166.093.334.329,00	324.972.045.592,00	64,74
997.459.449.170,35	225.924.896.490,00	400.381.631.352,00	65,33
1.200.412.475.086,30	348.422.789.544,00	592.382.403.997,00	65,95
6.73E+11	1.52E+11	2.80E+11	64.02800
5.80E+11	1.28E+11	2.23E+11	63.92500
1.20E+12	3.48E+11	5.92E+11	65.95000
3.64E+11	7.73E+10	1.59E+11	62.45000
2.69E+11	8.14E+10	1.32E+11	1.103407
0.792010	1.544035	1.461925	0.304570
2.454251	4.493208	4.161791	2.109394

Independent Variable

Year	Independent Ratio	Effectiveness Ratio
	X1	X2
2007	4,25	106,82
2008	4,09	130,12
2009	3,62	89,28
2010	3,39	80,95
2011	3,73	112,34
2012	4,24	107,85
2013	5,56	116,69
2014	7,71	120,13
2015	7,12	117,96
2016	8,10	109,41
Mean	1.593.481	4.684.104
Median	1.445.666	4.708.331
Maximum	2.091.948	4.868.449
Minimum	1.219.830	4.393.771
Std. Dev.	0.331565	0.141824

Skewness	0.485543	-0.946898
Kurtosis	1.608.648	3.002.117

Intervening Variable

Year	Expenditure Confirmity Ratio	Budget Absorption Ratio		
	X3	X4		
2007	62,16	90,57	Expenditure Conformity Ratio	Budget Absorption Ratio
2008	62,32	91,01	X3	X4
2009	58,47	98,46		
2010	48,51	96,59		
2011	53,16	94,32		
2012	40,48	92,89		
2013	43,77	92,64		
2014	51,11	94,88		
2015	56,43	92,66		
2016	58,82	90,88		
Mean	3.970.679	4.537.513		
Median	4.003.139	4.530.178		
Maximum	4.132.275	4.589.632		
Minimum	3.700.914	4.506.153		
Std. Dev.	0.146964	0.027425		
Skewness	-0.623318	0.616527		
Kurtosis	2.184.568	2.334.811		

Dependent Variable

Dependent variable	HDI	
Year		
	Y	
2007	62,45	
2008	62,92	
2009	63,10	
2010	63,51	
2011	63,80	
2012	64,05	
2013	64,43	
2014	64,74	
2015	65,33	
2016	65,95	
Mean	4.159.187	
Median	4.157.709	
Maximum	4.188.897	
Minimum	4.134.366	
Std. Dev.	0.017194	

Skewness		0.279716		
	Kurtosis	2.094.394		

Attachment. Regression Analysis Equation1 :The Effect X1 and X2 on X3

Dependent Variable: X3						
Method: Generalized Linear Model (Quadratic Hill Climbing)						
Date: 08/29/18 Time: 05:07						
Sample: 2007 2016						
Included observations: 10						
Family: Normal						
Link: Identity						
Dispersion computed using Pear						
Convergence achieved after 1 ite						
Coefficient covariance computed	d using observed H	lessian				
37 ' 11	C CC: .	C. 1. F.	g, ,; ,;	Prob.		
Variable	Variable Coefficient Std. Error z-Statistic					
X1	X1 2.188446 0.987685 2.215732		0.0267			
X2			0.9369			
C 71.57516		21.04659	3.400796	0.0007		
Mean dependent var	Iean dependent var 95.91730 S.D. dependent var			25.82611		
Sum squared resid	red resid 3469.020 Log likelihood			-43.71797		
Akaike info criterion	fo criterion 9.343594 Schwarz criterion			9.434370		
Hannan-Quinn criter. 9.244014 Deviance			3469.020			
Deviance statistic	495.5742	Restr. deviance	6002.891			
LR statistic	5.113001	Prob(LR statistic	0.077576			
Pearson SSR 3469.020 Pearson statistic			495.5742			
Dispersion 495.5742						

Equation2: The Effect X1 and X2 on X4

Dependent Variable: X4							
Method: Generalized Linear Model (Quadratic Hill Climbing)							
Date: 08/29/18 Time: 05:08							
Sample: 2007 2016							
Included observations: 10							
Family: Normal							
Link: Identity							
Dispersion computed using Pear	Dispersion computed using Pearson Chi-Square						
Convergence achieved after 1 its	Convergence achieved after 1 iteration						
Coefficient covariance computed using observed Hessian							
Variable	Coefficient	Std. Error	z-Statistic	Prob.			
X1	0.0368						
X2	0.2810						
C	0.0331						

Mean dependent var	61.89530	S.D. dependent var	34.31902
Sum squared resid	6228.326	Log likelihood	-46.64415
Akaike info criterion	9.928830	Schwarz criterion	10.01961
Hannan-Quinn criter.	9.829249	Deviance	6228.326
Deviance statistic	889.7609	Restr. deviance	10600.15
LR statistic	4.913487	Prob(LR statistic)	0.085714
Pearson SSR	6228.326	Pearson statistic	889.7609
Dispersion	889.7609		

Equation3 :The Effect X3 and X4 on Y					
Dependent Variable: Y					
Method: Generalized Linear Model (Quadratic Hill Climbing)					
Date: 08/29/18 Time: 05:10					
Sample: 2007 2016					
Included observations: 10					
Family: Normal					
Link: Identity					
Dispersion computed using Pear	son Chi-Square				
Convergence achieved after 1 ite	eration				
Coefficient covariance compute	d using observed H	essian			
Variable	Coefficient	Std. Error	z-Statistic	Prob.	
X3	0.035291	0.017337 2.035604		0.0418	
X4	0.028880	0.013047	2.213585	0.0269	
C	59.29215	1.945923	30.46995	0.0000	
Mean dependent var	64.46470	S.D. dependent v	ar	1.755487	
Sum squared resid	12.56697	Log likelihood		-15.61519	
Akaike info criterion	3.723039	Schwarz criterion		3.813814	
Hannan-Quinn criter.	3.623458	Deviance		12.56697	
Deviance statistic	1.795281	Restr. deviance	27.73563		
LR statistic	8.449185	Prob(LR statistic	0.014631		
Pearson SSR	12.56697	Pearson statistic	1.795281		
Dispersion	1.795281				