18Feb 2017

INTERACTOME ANALYSIS OF PROTEIN KINASES, GERMINATION-RELATED AND HORIZONTALLY TRANSFERRED GENES OF NOSEMA BOMBYCIS USING STRING.

  • Silkworm Breeding and Molecular Biology Laboratory, Central Sericultural Research & Training Institute, Srirampura, Mysore-570 008, Karnataka
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Nosema bombycis infects Bombyx mori upon spore germination utilizing a characteristic mechanism to invade host cell. The uptake of microsporidian spore is either by spore-host interaction or by endocytosis. The molecular mechanism leading to such interactions is not well elucidated. The expansions of N. bombycis genome have acquired many horizontal genes and interact with protein kinases, involved in defense mechanism and cell cycle events. Present study aimed towards understanding these interactions as spore germination being vital process in pebrine infects silkworms through spore endocytosis. Using STRING - the molecular functions of all these proteins and its functional partners in the interactome were analyzed and annotated. Further, the protein-protein interactions network was analyzed to study the functional interaction partners that could decipher the mechanism triggering uptake of spore through endocytosis. A total of 50 proteins including protein kinases, horizontal transfer and germination related genes were studied emphasizing CDC28 activation of VPS34 which inturn mediated the activation of CDC10 leading to spore wall formation. In conclusion, results highlighted the most possible mechanism triggering endocytosis of microsporidia and functional contribution of protein kinases and genes involved in horizontal gene transfer to the N. bombycis germination and survival strategy.


  1. Ma Z, Li C,  Pan G,  Li Z,  Han H, et al, Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis. PLoS ONE.  8 (2013) (12)
  2. Li Y, Tao M,  Ma F,  Pan G,  Zhou  et al, A monoclonal antibody that tracks endospore formation in the microsporidium Nosema bombycis. PLoS ONE 10(3), (2015), e0121884.
  3. Cai S, Lu X, Qiu H, Li M & Feng Z, Identification of a Nosema bombycis (Microsporidia) spore wall protein corresponding to spore phagocytosis. Parasitology,  138,  (2011), 1102–
  4. Li Z, Pan G,  Li  T, Huang  W,  Chen  J,  et al, SWP5  a Spore wall protein  interacts with polar tube proteins in the parasitic microsporidian Nosema bombycis. Eukaryotic Cell.  (2011) 229–237.
  5. Pan G, Xu J, Li T,  Xia Q,  Liu SL,  et al, Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC Genomics, 14 (2013), 186-200.
  6. Li Z, Hao Y, Wang L, Xiang H & Zhou Z,: Genome-Wide Identification and Comprehensive Analyses of the Kinomes in Four Pathogenic Microsporidia Species. PLoS ONE 9(12), (2014),
  7. Saavedra DM,  Stark  MJR,  Packer  JC,  Vivares CP,  Doerig C.  et al, The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe. BMC Genomics 8, (2007), 309-330.
  8. Liu H, Li M, He X, Cai S, He X et al, Transcriptome sequencing and characterization of ungerminated and germinated spores of bombycis, Acta Biochim Biophys Sin., (2016), 1–11.
  9. Szklarczyk D, Franceschini A, Wyder S,  Forsnund K,  Heller D, et al,  STRING V10- protein protein interaction networks  integrated over the tree of life. Acids Res. 43, (2015), 447-452.
  10. Frankenhuyzen K, Ebling P,   McCron B,  Ladd T, Gauthier D, et al,  Occurrence of Cystosporogenes sp. (Protozoa  Microsporidia) in a multi-species insect production facility and its elimination from a colony of the eastern spruce budworm  Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae. Invert. Pathol. 87, (2004), 16–28.
  11. Keohane EM & Weiss  LM,  Characterization and function of the microsporidian polar tube: a review. Folia Parasitologica.  45, (1998), 117-127.
  12. Onishi M,  Koga  T, Hirata  A,  Nakamura  T,  Asakawa  H,  et al,  Role of septins in the orientation of forespore membrane extension during sporulation in fission yeast. Cell. Biol. 30 (8), (2010), 2057–2074
  13. He X,  Liu  H,  Li  M,  Cai  S,  Fu  Z,  et al, Proteomic analysis of BmN cells (Bombyx mori) in response to infection with Nosema bombycis. Acta Biochim Biophys Sin46 (11), (2014), 982-990
  14. Nakjang S,  Williams  TA,  Heinz  E,  Watson  AK,  Foster  PG,  et al,  Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biol. Evol. 5(12), (2013), 2285–2303.
  15. Heinz E,  Williams  TA, Nakjang  S,  Noe  CJ,  Swan  DC,  et al,  The genome of the obligate intracellular parasite trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 8(10), (2012), e1002979.
  16. Dolgikh VV, Activities of enzymes of carbohydrate and energy metabolism of the intracellular stages of the microsporidian Nosema grylli. Protistology 1(3), (2000), 87-91.
  17. Watson AK, Williams  TA,  Williams  BAP,  Moore  KA,  Hirt  RP et al, Transcriptomic profiling of host-parasite interactions in the microsporidian Trachipleistophora hominis. BMC Genomics 16, (2015), 983-1003.
  18. Selman M,  Pombert  JF,  Solter  L,  Farinelli  L,  Weiss  LM,  et al,  Acquisition of an animal gene by microsporidian intracellular parasites. Curr Biol. 21(15), (2011), 576-577.
  19. Williams BAP, Unique physiology of host–parasite interactions in microsporidia infections Cellular Microbiology 11(11),  (2009),  1551–1560.

[Satish L, Kusuma L, Manthira Moorthy S and Sivaprasad V. (2017); INTERACTOME ANALYSIS OF PROTEIN KINASES, GERMINATION-RELATED AND HORIZONTALLY TRANSFERRED GENES OF NOSEMA BOMBYCIS USING STRING. Int. J. of Adv. Res. 5 (Feb). 497-506] (ISSN 2320-5407). www.journalijar.com


Satish L
Scientist B

DOI:


Article DOI: 10.21474/IJAR01/3177      
DOI URL: http://dx.doi.org/10.21474/IJAR01/3177