22Apr 2017

PHOTO-CATALYTIC BEHAVIOR OF CDSE QDS SENSITIZED ZR-(1,3,5-BENZENE TRICARBOXYLIC ACID) METAL-ORGANIC FRAMEWORKS

  • Department of Engineering Chemistry, A U College of Engineering (A), Andhra University, Visakhapatnam? 530003, India.
  • Electropyro Metallurgy Division, CSIR-Central Electrochemical Research Institute, Karaikudi?630003, Tamilnadu, India.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Here we reported the synthesis of CdSe quantum dots (QDs) sensitized Zr-1,3,5-benzene tricarboxylic acid (ZrBTC) metal-organic frameworks (MOFs) hetero-structure. The photo-catalytic activity of CdSe QDs-ZrBTC MOFs is examined for Phloxine B dye degradation under visible light illumination. The CdSe semiconductor QDs presence on ZrBTC MOFs is confirmed by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transition electron microscopy (TEM) characterizations. The XRD spectrum of CdSe QDs demonstrates the cubic crystalline phase for CdSe QDs. The high crystallinity and bulk phase of ZrBTC MOFs is evinced by XRD pattern of ZrBTC. Surface morphological (FESEM and HRTEM) observations realise that ZrBTC MOFs formed into 2D sheets and sensitized with CdSe QDs. The UV-visible absorption spectrum reveals that the CdSe QDs-ZrBTC hetero-structure absorbs the light at 520 nm wavelength. The 2D ZrBTC MOFs provide platform for CdSe QDs to hinder the effective electron-hole pair recombination under photo-excitation. The photo-catalytic Phloxine B dye degradation experiments reveals that the CdSe QDs-ZrBTC hetero-structure demonstrated enhanced potential to make use of visible light absorption of CdSe semiconductor quantum dots in the solar spectrum.


  1. Gopal, K.V. and Wynkoop, D. (1996): Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environ. Sci. Technol.,30:1660-1666
  2. Adegoke, K.A. and Bello, O.S.(2015): Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 12: 8?24.
  3. Assadi, A., Nateghi, R., Bonyadinejad, G.R. and Amin, M.M.(2012): Application of coagulation process reactive blue 19 dye removal from textile industry wastewater .International Journal of Environmental Health Engineering, 1: 1-5.
  4. Moosvi, S., Keharia, H. and Madamwar, D. (2005): Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology & Biotechnology , 21:667?672
  5. Mukhlish, M. Z. B., Najnin, F., Rahman, M. M. and Uddin, M. J. (2013): Photocatalytic Degradation of Different Dyes Using TiO2 with High Surface Area: A Kinetic Study. J. Sci. Res., 5: 301-314.
  6. Neppolian, B., Sakthivel, S., Arabindoo, B., Palanichamy, M. and Murugesan, V. (1999): Degradation of textile dye by solar light using TiO2 and ZnO photo-catalysts. J. Environ. Sci. Health, A, 34: 1829-1838.
  7. Dafare, S., Deshpande, P .S. and Bhavsar, R. S.? (2013): Photocatalytic Degradation of Congo Red dye on Combustion synthesized Fe2O3. Indian Journal of Chemical Technology, 20: 406-410.
  8. Luo, J. and Hepel, M. (2001): Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode. Electrochimica Acta, 46: 2913?2922.
  9. Periyat, P., Pillai, S. C., McCormack, D. E., Colreavy, J. and Steven, J. (2008): Hinder Improved High-Temperature Stability and Sun-Light-Driven Photocatalytic Activity of Sulfur-Doped Anatase TiO2. ? Phys. Chem. C, 112: 7644?7652.
  10. Kruanetr, S., Tan-arsa, N. and Wanchanthuek, R. (2013): The Study of Methylene Blue Removal by Using Mixed TiO2 as a Catalyst under Solar Light Irradiation. International Journal of Scientific and Research Publications, 3: 1-7.
  11. Zhang, Y.G . , Ma, L.L., Li , J.L. and Yu, Y . (2007): In Situ Fenton Reagent Generated from TiO2/Cu2O Composite Film: a New Way to Utilize TiO2 under Visible Light Irradiation Sci. Technol., 41: 6264-6269.
  12. Muthulingam, S., Lee, I.H. and Uthirakumar, P. (2015): Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight. Journal of Colloid and Interface Science, 455: 101?109.
  13. Rajabi , H. R. , Khani , O. , Shamsipur , M. and Vatanpour, V. (2013): High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. Journal of Hazardous Materials, 250?251: 370?378.
  14. Zhang, M., Xu, Y. , Lv, J. , Yang, L., Jiang, X. , He, G. , Song, X. and Sun, Z. (2014): Capability of coupled CdSe/TiO2 heterogeneous structure for photocatalytic degradation and photoconductivity. Nanoscale Research Letters , 9 :1-7.
  15. Chen, C., Zhai, Y. , Li, C. and Li, F. (2014): Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber. Nanoscale Research Letters, 9:1-9.
  16. Ke, F., Wang, L. and Zhu. J. (2015): Facile fabrication of CdS?metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Research, 8: 1834?1846.
  17. Zhang, H. , Ming, H., Lian, S., Huang, , Li, H. , Zhang, L. , Liu, Y. , Kang ,Z. and Leeb, S.T. (2011): Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans., 40:10822?10825.
  18. Zhang, H. , Huang, H., Ming, H. , Li, H. , Zhang, L. , Liu, Y. and Kang, Z. (2012): Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem., 22: 10501?10506.
  19. Ragon, F. , Campo, B. , Yang, Q., Martineau, C., Wiersum, A. D. , Lago, A. , Guillerm, V. , Hemsley, C.,Eubank, J. F. , Vishnuvarthan, M., Taulelle, F. , Horcajada, P.,Vimont, A. , Llewellyn, P.L. , Daturi, M. , Vinot, S. D.Maurin, G. , Serre, C., Devic, T. and Clet, G. (2015): Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. J. Mater. Chem. A, 3:3294?3309.
  20. Eddaoudi, M. , Li, H. and Yaghi, O. M. (2000): Highly Porous and Stable Metal-Organic Frameworks: Structure Design and Sorption Properties. Am. Chem. Soc., 122: 1391-1397.
  21. Allendorf, M.D. , Houk, R. J. T. , Andruszkiewicz, L., Talin, A. A. , Pikarsky, J. , Choudhury, A. , Gall, K. A. and Hesketh, P. (2008): J. Stress-Induced Chemical Detection Using Flexible Metal-Organic Frameworks. J. AM. CHEM. SOC., 130: 14404?14405.
  22. McKinlay, A. C., Morris, R.E. , Horcajada, P., Frey, G., Gref, R. , Couvreur, P. and Serre, C. (2010): MetalOrganic Frameworks in Biomedicine. Angew. Chem. Int. Ed., 49:6260 ? 6266.
  23. Luz, I., Xamena F.X. L. and Corma, A. (2012): Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. Journal of Catalysis, 285: 285?291.
  24. Butler, K. T. , Hendon, C. H., and Walsh, A. (2014): Electronic Chemical Potentials of Porous Metal−Organic Frameworks. J. Am. Chem. Soc.,136: 2703−2706.
  25. Wu, C.D. , Hu, A. , Zhang, L. and Lin, W. (2005): A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. J. AM. CHEM. SOC., 127:8940-8941.
  26. Xamena, F. X. L., Corma, A. and Garcia, H. (2007): Applications for Metal-Organic Frameworks (MOFs) as Quantum Dot Semiconductors. Phys. Chem. C, 111: 80-85.
  27. Amador, R. N. , Carboni, M. and Meyer, D. (2017): Sorption and photodegradation under visible light irradiation of an organic pollutant by a heterogeneous UiO-67?Ru?Ti MOF obtained by post-synthetic exchange. RSC Adv., 7:195?200.
  28. Shi , L., Wang , T. , Zhang , H. , Chang , K. , Meng , X., Liu , H. and Ye, J. (2015): An Amine-Functionalized Iron(III) Metal?Organic Framework as Effi cient Visible-Light Photocatalyst for Cr(VI) Reduction. Sci., 2:1500006
  29. Yang, H., He, X. W., Wang, F., Kang, Y. and Zhang, J. (2012): Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J. Mater. Chem., 22: 21849?21851
  30. Xu, X.Y. and Yan. B. (2017): Eu(III)-functionalized ZnO@MOF heterostructures: integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. J. Mater. Chem. A, 5: 2215?2223.
  31. Zhan, W., Kuang, Q. , Zhou, J., Kong, X., Xie, Z. and Zheng,L. (2013): Semiconductor@Metal−Organic Framework Core−Shell Heterostructures: A Case of ZnO@ZIF‑8 Nanorods with Selective Photoelectrochemical Response. J. Am. Chem. Soc., 135:1926−1933.
  32. Zhang, C.F., Qiu, L.G. , Ke, F. , Zhu, Y.J. , Yuan, Y.P., Xua, G.S. and Jiang, X. (2013): A novel magnetic recyclable photocatalyst based on a core?shell metal?organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J. Mater. Chem. A, 1:14329?14334.
  33. Mihalyi, A., Jamshidi, S., Slikas, J. and Bugg, T. D. H. (2014): Identification of novel inhibitors of phospho-MurNAc-pentapeptide translocase MraY from library screening: Isoquinoline alkaloid michellamine B and xanthene dye phloxine B Bioorganic & Medicinal Chemistry. 22 :4566?4571.
  34. Keum, Y. S. , Kim, J.H. and Li, Q. X. (2003): Relationship between Singlet Oxygen Formation and Photolysis of Phloxine B in Aqueous Solutions. Journal of? Photoscience, 10: 219-223.
  35. Mir, N.A., Khan, A.,Kumar. and Muneer, M. (2013): Photocatalytic Study of a Xanthene Dye Derivative, Phloxine B in Aqueous Suspension of TiO2: Adsorption Isotherm and Decolourization Kinetics. Energy and Environment Focus ,2 : 208-216.
  36. Jain , R. and Shrivastava, M. (2008): Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide. Journal of Hazardous Materials, 152 : 216?220.
  37. Oudhia, A. and Bichpuria, P. (2014): Green wet chemical route to synthesize capped CdSe quantum dots. Bull. Mater. Sci., 37:15-18.
  38. Amiri, G. R. , Fatahian, S. and S. 2013:? Preparation and Optical Properties Assessment of CdSe Quantum Dots. Materials Sciences and Applications, 4: 134-137.
  39. Farhadia, S. , Manteghia, F. and Karimia. M. (2016): Application of a Zr-Metal Organic Framework in NCPE for Lithium Battery. Sciforum Electronic Conference Series, 20:1-30.
  40. Cheng, C. , Fang, J. , Lu, S., Cen, C., Chen, Y. , Ren, L. , Fenga, W.? and Fanga, Z. (2016): Zirconium metal-organic framework supported highly-dispersed nanosized BiVO4 for enhanced visible-light photocatalytic applications. J Chem Technol Biotechnol., 91:2785?2792.

[Haritha Gonthina, Gosipathala Sreedhar, and B. Venkateswara Rao. (2017); PHOTO-CATALYTIC BEHAVIOR OF CDSE QDS SENSITIZED ZR-(1,3,5-BENZENE TRICARBOXYLIC ACID) METAL-ORGANIC FRAMEWORKS Int. J. of Adv. Res. 5 (Apr). 251-261] (ISSN 2320-5407). www.journalijar.com


Haritha Gonthina
Research scholar,Department of Engineering Chemistry, A U College of Engineering (A), Andhra University, Visakhapatnam – 530003, India

DOI:


Article DOI: 10.21474/IJAR01/3802      
DOI URL: http://dx.doi.org/10.21474/IJAR01/3802