04Jan 2018

EVALUATION OF ANGIOGENESIS IN ORAL EPITHELIAL DYSPLASIA AND ORAL SQUAMOUS CELL CARCINOMA: AN IMMUNOHISTOCHEMICAL COMPARISON BETWEEN ANTI-CD105 AND ANTI-CD31 ANTIBODIES.

  • Assistant Lecturer of Oral Pathology, Faculty of Dentistry, October 6 University, Egypt.
  • Associate Professor of Oral and Maxillofacial Pathology, Faculty of Dentistry, Cairo University, Egypt.
  • Professor of Oral Pathology, Faculty of Dentistry, Tanta University, Egypt.
  • Professor of Oral and Maxillofacial Pathology, Faculty of Dentistry, Cairo University, Egypt.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Background and Aim: The tumor-induced angiogenesis is used as a reliable marker for tumor progression and metastasis. CD105 has been suggested as a marker with a greater specificity for tumor-induced angiogenesis since it is strongly up-regulated on proliferating endothelial cells of newly formed blood vessels while it shows no or only weak expression in normal pre-existing ones unlike CD31 which can not differentiate the newly formed tumoral vessels from normal pre-existing ones. This study was designed to measure the microvessel density (MVD) in oral epithelial dysplasia and oral squamous cell carcinoma using CD105 and CD31. Methodology and Principal Findings: A total of 40 oral epithelial dysplasia and oral squamous cell carcinoma specimens were immunostained with CD105 and CD31. Then MVD was measured according to ?hot spot method? in 3 high power microscopic fields at a magnification x200. The number of immunostained blood vessels increased from normal through dysplasia to carcinoma with a mean value of 1.5?0.5, 3.2?1 and 5.263?0.8 for CD105 and 3.6?1.02, 7.6?0.8 and 9.77?1.75 for CD31 respectively. CD31 showed positive immunoreaction in all blood vessels while CD105 revealed positive immunoreactivity only in the newly formed blood vessels while the native ones showed weak to negative immunoexpressions. Conclusion: CD105 can be considered as a more specific marker for measuring the tumor-induced angiogenesis compared to the commonly used panendothelial marker CD31.


  1. Basilio de Oliveira, R. and Pannain, V. (2015): Prognostic angiogenic markers (Endoglin, VEGF, CD31) and tumor cell proliferation (Ki67) for gastrointestinal stromal tumors. World J. Gastroenterol., 21(22):6924-6930.
  2. Basnaker, M.; Sr, S. and Bnvs, S., 2014. Expression of endoglin (CD105) and microvessel density in oral dysplasia and squamous cell carcinoma. J. Clin. Diagn. Res., 8(9):ZC91-ZC94.
  3. Bellone, G.; Solerio, D.; Chiusa, L.; Brondino, G.; Carbone, A.; Prati, A.; Scirelli, T.; Camandona, M.; Palestro, G. and Dei Poli, M. (2007): Transforming growth factor-β binding receptor endoglin (CD105) expression in esophageal cancer and in adjacent nontumorous esophagus as prognostic predictor of recurrence. Ann. Surg. Oncol., 14(11):3232-3242.
  4. Bernabeu, C.; L?pezNovoa, J. and Quintanilla, M. (2009): An emerging role of TGF-β co-receptors in cancer. Biochim. Biophys. Acta., 1792(10):954-973.
  5. Buschmann, I. and Schaper, W. (2000): The pathophysiology of the collateral circulation (arteriogenesis).?J. Pathol.,?190(3):338-342.
  6. Chien, C.; Su, C.; Hwang, C.; Chuang, H.; Hsiao, Y.; Wu, S. and Huang, C. (2006): Clinicopathologic significance of CD105 expression in squamous cell carcinoma of the hypopharynx. Head Neck, 28(5):441-446.
  7. Costello, B.; Li, C.; Duff, S.; Butterworth, D.; Khan, A.; Perkins, M.; Owens, S.; Al Mowallad, A.; O'Dwyer, S. and Kumar, S. (2004): Perfusion of 99Tcm-labeled CD105 Mab into kidneys from patients with renal carcinoma suggests that CD105 is a promising vascular target. Int. J. Cancer, 109(3):436-441.
  8. Dales, J.; Garcia, S.; Bonnier, P.; Andrac Meyer, L.; Ramuz, O. Lavaut, M.; Allasia, C. and Charpin C. (2003): CD105 expression is a marker of high metastatic riskand poor outcome in breast carcinomas: Correlations between immunohistochemical analysis and long-term follow-up in a series of 929 patients. Am. J. Clin. Pathol., 119(3):374-380.
  9. Dassoulas, K.; Gazouli, M.; Theodoropoulos, G.; Christoni, Z.; Rizos, S.; ZisiSerbetzoglou, A.; Glava, C.; Karantanos, T.; Klonaris, C. and Karakitsos, P. (2010): Vascular endothelial growth factor and endoglin expression in colorectal cancer. J. Cancer Res. Clin. Oncol., 136(5):703-708.
  10. de Oliveira, M.; Pereira Gomes, E.; Pereira, C.; de Souza, L.; Barros, L.; Mendes, D.; Guimar?es, A. and De Paula, A. (2013): Prognostic value of microvessel density and p53 expression on the locoregional metastasis and survival of the patients with head and neck squamous cell carcinoma. Appl. Immunohistochem. Mol. Morphol., 21(5):444-451.
  11. Duff S., Li C., Garland J. and Kumar S. (2003): CD105 is important for angiogenesis: Evidence and potential applications. FASEB J; 17:984-92.
  12. Fern?ndez, A.; Fern?ndez, J.; Marshall, M.; Mart?nez, R.; Niklander, S. and Haidar, Z. (2017): Difference in EGFR expression and mean vascular density in normal oral mucosa, oral epithelial dysplasia and oral squamous cell carcinoma. J. Oral Res., 6(2):39-45.
  13. Folkman, J. (2000): Incipient angiogenesis. J Nati Cancer Inst., 92(2), 94-5.
  14. Fonsatti, E. and Maio, M. (2004): Highlights on endoglin (CD105): From basic findings towards clinical applications in human cancer. J. Transl. Med., 2(1):18.
  15. Gee, M., Procopio, W., Makonnen, S., Feldman, M., Yeilding, N. and Lee, W. (2003): Tumor vesseldevelopment and maturation impose limits on theeffectiveness of anti-vascular therapy. Am. J. Pathol., 162(1):183-93.
  16. Hanahan, D. and Weinberg, R.. (2011): Hallmarks of Cancer: The Next Generation. Cell, 144(5):646-674.
  17. Ho, J.; Poon, R.; Sun, C.; Xue, W. and Fan, S. (2005): Clinicopathological and prognostic implications of endoglin (CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver.?World J. Gastroenterol., 11(2):176-181.
  18. Kujan, O.; Oliver, R.; Khattab, A.; Roberts, S.; Thakker, N. and Sloan, P. (2006): Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation. Oral Oncol., 42(10):987-993.
  19. Lertkiatmongkol, P.; Liaoa, D.; Meib, H.; Hub, Y. and Newmana, P. (2016): Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol., 23(3):253-259.
  20. Li, S.; Hung, P.; Chou1, K.; Hsieh, S. and Shieh, Y. (2009): Tumor Angiogenesis in Oral Squamous Cell Carcinomas:The Significance of Endothelial Markers and Hotspot Selection. J. Med. Sci., 29(2):67-74.
  21. Mărgăritescu, C.; Simionescu, C.; Mogoantă, L.; Badea, P.; Pirici, D.; Stepan, A. and Ciurea, R. (2008): Endoglin (CD105) and microvessel density in oral squamous cell carcinoma. J. Morphol. Embryol., 49(3):321-326.
  22. Marioni, G.; Marino, F.; Giacomelli, L.; Staffieri, C ;Mariuzzi, M.; Violino, E. and De Filippis, C. (2006): Endoglin expression is associated with poor oncologic outcome in oral and oropharyngeal carcinoma. Acta. Otolaryngol., 126(6):633-639.
  23. Mariotto, ; Yabroff, K.; Shao, Y.; Feuer, E. and Brown, M. (2011): Projections of the cost of cancer care in the United States: 2010-2020. J. Nati. Cancer Inst., 103(2):117-128.
  24. Martone, T.; Rosso, P.; Albera, R.; Migliaretti, G.; Fraire, F.; Pignataro, L.; Pruneri, G.; Bellone, G. and Cortesina, G. (2005): Prognostic relevance of CD105 microvessel density in HNSCC patient outcome. Oral Oncol., 41(2):147-155.
  25. Mitselou, A.; Galani, V.; Skoufi, U.; Arvanitis, D.; Lampri, E and Ioachim, E. (2016): Syndecan-1, Epithelial-Mesenchymal Transition Markers (E-cadherin/β-catenin) and Neoangiogenesis-related Proteins (PCAM-1 and Endoglin) in Colorectal Cancer. Anticancer Res., 36(5):2271-2280.
  26. Nagatsuka, H.; Hibi, K.; Gunduz, M.;Gunduz, M.; Tsujigiwa, H.; Tamamura, R.; Sugahara, T.; Sasaki, A. and Nagai, N. (2005): Various immunostaining patterns of CD31, CD34 and endoglin and their relationship with lymph node metastasis in oral squamous cell carcinomas. J. Oral Pathol. Med., 34(2):70-76.
  27. Nair, S.; Nayak, R.; Bhat, K.; Kotrashetti, V. and Babji, D. (2016): Immunohistochemical expression of CD105 and tgf-β1 in oral squamous cell carcinoma and adjacent apparently normal oral mucosa and its correlation with clinicopathologic features. Appl. Immunohistochem. Mol. Morphol., 24(1):35-41.
  28. Paddock, C., Lytle, B., Peterson, F., Holyst, T., Newman, P., Volkman, B., et al. (2011): Residues within a lipid-associated segment of the PECAM-1 cytoplasmic domain are susceptible to inducible, sequential phosphorylation. Blood; 117:6012-23.
  29. Pindborg, J.; Reichart, P.; Smith, C. and van der Wall, I. (1997): Carcinomas. In: Altini, M.; Anneroth, G.; Bhonsle, R. et al. (eds) Histological Typing of Cancer and Precancer of the Oral Mucosa, 2nd Berlin,Germany, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, pp:11-16.
  30. Romani, A.; Borghetti, A.; Del Rio, P.; Sianesi, M. and Soliani, P. (2006): The risk of developing metastatic disease in colorectal cancer is related to CD105-positive vessel count. J. Surg. Oncol., 93(6):446-455.
  31. Romero, D.; O?Neill, C.; Terzic, A.; Contois, L.; Young, K.; Conley, B.; Bergan, R.; Brooks, P. and Vary, C. (2011): Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res., 71(10):3482-3493.
  32. Seki, S., Mutsunori, F., Fujiwara, M., Matsuura, M., Fujita, S., Ikeda, H., et al. (2011): Prediction of outcome of patients with oral squamous cell carcinoma using vascular invasion and the strongly positive expression of vascular endothelial growth factors. Oral Oncol.; 47(7):588-93.
  33. Siar, C.; Oo, V.; Nagatsuka, H.; Nakano, K.; Ng, K. and Kawakami, T. (2009): Angiogenic squamous dysplasia-like phenomenon in oral epithelial precursor lesions.?Eur. J. Med. Res.,14(7):315-319.
  34. Sperandio, M.?;?Brown, A.;?Lock, C.?;?Morgan, P.?;?Coupland, V.;?Madden, P.?;?Warnakulasuriya, S.; M?ller,?H??and?Odell, E. (2013): Predictive value of dysplasia grading and dnaploidy in malignant transformation of oral potentially malignant disorders. Cancer Prev. Res.,?6(8):822-831.
  35. Tadbir, A.; Ashraf, M. and Moradi, M. (2014): Clinicopathological Significance of CD105 Expression in Squamous Cell Carcinoma of the Oral Cavity. MEJC, 5(1):7-12.
  36. Takahashi, N.; Haba, A.; Matsuno, F. and Seon, B. (2001): Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res., 61(21):7846-7854.
  37. Taskiran, C.; Erdem, O.; Onan, A.; Arisoy, O.; Acar, A.; Vural, C.; Erdem, M.; Ataoglu, O. and Guner, H. (2006): The prognostic value of endoglin (CD105) expression in ovarian carcinoma. Int. J. Gynecol. Cancer, 16(5):1789-1793.
  38. Thomas, B., Eyries, M., Montagne, K., Martin, S., Agrapart, M., Simerman-Fran?ois, R. et al. (2007): Altered endothelial gene expression associated with hereditary haemorrhagic telangiectasia. Eur. J. Clin. Invest., 37:580-8.
  39. Weidner, N.; Semple, J.; Welch, W. and Folkman, J. (1991): Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N. Engl. J. Med., 324(1):1-8.
  40. Wikstrom, P.; Lissbrant, I.; Stattin, P.; Egevad, L. and Bergh, A. (2002): Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate, 51(4):268-275.
  41. Wood, G. and Warnke, R. (1981): Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection system. J. Histochem. Cytochem., 29(10):1196-1204.

[Amina Fouad Farag, Rehab Fawzi Kasem, Nahed Emad El-Din Abo-Azma and Mohsen Kazem Abd El-Latif. (2018); EVALUATION OF ANGIOGENESIS IN ORAL EPITHELIAL DYSPLASIA AND ORAL SQUAMOUS CELL CARCINOMA: AN IMMUNOHISTOCHEMICAL COMPARISON BETWEEN ANTI-CD105 AND ANTI-CD31 ANTIBODIES. Int. J. of Adv. Res. 6 (Jan). 338-347] (ISSN 2320-5407). www.journalijar.com


Amina Fouad Farag
Assistant Lecturer, Oral Pathology Department, Faculty of Dentistry, October 6 University, Egypt.

DOI:


Article DOI: 10.21474/IJAR01/6224      
DOI URL: http://dx.doi.org/10.21474/IJAR01/6224