15Aug 2017

OPTIMIZATION OF Cr AND Cu BIOSORPTION BY GREEN MARINE ALGAE Caulerpa racemosaVar. Cylindracea & Ulva lactuca

  • Sophisticated Instrumentation Centre for Applied Research and Testing, Vallabh vidhyanagar-388120, Gujarat, India.
  • Department of Biology, V. P. Science College, Sardar Patel University, Vallabh vidhyanagar-388120, Gujarat, India.
  • Department of Chemistry, R. K. Parikh Arts & Science College, Sardar Patel University, Petlad-388450, Gujarat, India.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Biosorption potential of the Caulerpa racemosa var. cylindracea & Ulva lactuca (Chlorophyta) were studied in removal of toxic heavy metals such as chromium (Cr) & copper (Cu) from industrial reactive azo dyes effluents in batch mode. The experiments were carried out in ambient conditions at pH 7, 50 & 60 minutes of equilibrium time was obtained in Caulerpa racemosa & Ulva lactuca respectively. The maximum 20.23 % Cr and 42.91 % Cu removal was observed in Caulerpa racemosa. In Ulva lactuca 62.2 % Cr and 70.35 % Cu removal was observed. The biosorption yield towards Cu > Cr observed in both seaweed biomass. Ulva lactuca gives potential biosorption yield as compare to Caulerpa racemosa. .The data are well fitted by the Freundlich and Langmuir isotherms shows the favorable biosorption of dye effluent by green seaweed biomass. The data on the kinetic studies fitted well and shows the adsorption kinetics of dyes effluent by both green seaweed biomass followed the pseudo-second order model for biosorption of Cr and Cu, only pseudo first order model was observed in Cr treatment by Ulva lactuca. The SEM analysis shows the uneven surface and cells were damaged & swollen after treatment with effluent and FTIR study reveals the variation in functional groups and decrease in peak intensity indicates the participation of metal binding inside the cells of the biomass. Thus the present study indicates this biomass can be used as effective, eco friendly and low cost material in biosorption of highly polluted water containing heavy metals.


  1. Sud, D., Mahajan, G., Kaur, P. M. (2008): Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions: A Review. Bioresource Technology., 99: 6017-27. DOI: 10.1016/j.biortech.2007.11.064.
  2. Brahmbhatt, N. H., Patel, R. V., Jasrai, R.T. (2012): Bioremediation potential of spirogyrasps & oscillatoria sps for cadmium. Asian Journal of Biochemical and Pharmaceutical Research., 2 (2): 102.
  3. E- Book on Oilgae Guide to Algae-based waste water treatment. (2013): A Sample Report, Prepared by oilgae (oilgae.com) pp. 556. https://secure.clixoo.com/purchase/oilgae/wwt/report.html
  4. Das, C., Naseera, K., Ram, A., Ram, M. M., Ramaiah, N. (2016): Bioremediation of tannery waste water by a salt tolerant strain of Chlorella vulgaris., J ApplPhycol, 29: 235-243. DOI:10.1007/s10811-016-0910-8
  5. Rudakiya, D. M. and Pawar, K. S. (2013): Optimization of culture condition for enhanced decolorization of Reactive Orange 16 by Comamonas acidovorans MTCC 3364. Int J CurrMicrobiol App Sci., 2(10): 467-476.
  6. Fashola, M., Ngole-Jeme, V., Babalola, O. (2016): Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health., 13: 1047. DOI: 10.3390/ijerph13111047
  7. Ayangbenro, A. S. and Babalola, O. O. (2017): A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health, 14 (94): 1-16. DOI: 10.3390/ijerph14010094
  8. Ito, R., Kuroda, K., Hashimoto, H., Ueda, M. (2016): Recovery of platinum(0) through the reduction of platinum ions by hydrogenase-displaying yeast. AMB Express., 6: 88. https://doi.org/10.1186/s13568-016-0262-4
  9. Ruta, L. L., Kissen, R., Nicolau, I et al. (2017): Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Appl Microbiol Biotechnol., 101 (14): 5749-5763. https://doi.org/10.1007/s00253-017-8335-0
  10. Dhankhar, R., Hooda, A. (2011): Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol., 32: (5-6), 467-91. DOI:1080/09593330.2011.572922
  11. Barros J?nior, L. M., Macedo, G. R., Duarte, M. M. L., Silva, E. P., &Lobato, A. K. C. L. (2003): Biosorption of cadmium using the fungus Aspergillus niger. Brazilian Journal of Chemical Engineering., 20(3): 229-239. https://dx.doi.org/10.1590/S0104-66322003000300003
  12. Indelicato, A. (2014): The Use of Plants and Wild flowers as Bioremediation for Contaminated Soils in the Hong Kong S.A.R. Open Journal of Soil Science., 4: 305-311. http://dx.doi.org/10.4236/ojss.2014.49032
  13. Galon, L., Lima, A. M., Guimar?es, S., Belarmino, J. G., Burg, G. M., Concen?o, G., Bastiani, M. O., Beutler, A. N., Zandona, R. R., &Rad?nz, A. L. (2014): Potential of plant species for bioremediation of soils applied with imidazolinone herbicides. PlantaDaninha., 32 (4): 719-726. https://dx.doi.org/10.1590/S0100-83582014000400006
  14. Davis, T. A, Volesky, B., Mucci A. (2003): A review of the biochemistry of heavy metal biosorption by brown algae. Water Res., 37: 4311?4330.
  15. Sar, P., Kazy, S. K., Asthana, R. K., Singh, S. P. (1999): Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. Int. Biodeterior. Biodegrad., 44: 101?110. DOI:1016/S0964-8305(99)00064-5
  16. Kidgell, J. T., Nys de, R., Paul, N. A., Roberts, D. A. (2014): Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae. PloS One., 9 (6): e94706. https://doi.org/10.1371/journal.pone.0094706
  17. Fatemeh Faraji, G., Sina D., Alireza R., Abdolhamid E., Mohammad J. M., Mozhgan K., Sara G. N., Farshid S. (2016): Data on Fe (II) biosorption onto algae obtained from the Persian Gulf in Bushehr Port, Iran. Data in Brief., 9: 823-827. http://dx.doi.org/10.1016/j.dib.2016.10.018.
  18. Nasab, S. M., Naji, A., Yousefzadi, M. (2017): Kinetic and equilibrium studies on biosorption of cadmium (II) from aqueous solution by Gracilariacorticata and agar extraction algal waste. Journal of Applied Phycology., 1-10. DOI: 10.1007/s10811-017-1117-3
  19. Badescu, I. S., Bulgariu, D., Bulgariu, L. (2016): Alternative utilization of algal biomass (Ulva sp.) loaded with Zn (II) ions for improving of soil quality. Journal of Applied Phycology., 29: 1069-1079. DOI: 10.1007/s10811-016-0997-y
  20. Herrero, R., Lodeiro, P., Rojo, R., Ciorba, A., Rodríguez, P., Sastre de Vicente, M. E. (2008): The efficiency of the red alga for remediation of cadmium pollution, Bioresource Technology., 99 (10): 4138-4146. http://dx.doi.org/10.1016/j.biortech.2007.08.065
  21. Praveen, R. S. &Vijayaraghavan, K. (2015): Optimization of Cu(II), Ni(II), Cd(II) and Pb(II) biosorption by red marine alga Kappaphycus alvarezii. Desalination and Water Treatment., 55 (7): 1-9. DOI: 10.1080/19443994.2014.927334
  22. Munoz, J. Freile-Pelegrın, Y. Robledo, D. (2004): Mariculture of Kappaphycus alvarezii (Rhodophyta, olieriaceae) color strains in tropical waters of Yucata ?n, Mexico, Aquaculture., 239: 161?177.
  23. Pandya, K. Y., Patel, R. V., Jasrai, R. T., Brahmbhatt, N. H. (2017): Preliminary Study on Potential of Seaweeds in Decolorization Efficacy of Synthetic Dyes Effluent. Int. J. Plant, Animal and Environ Sci., 7: 59-69.
  24. (1998): Standard Methods for the Examination of Water and Wastewater. 20thEdn. American Public Health Association, Washington DC.
  25. Rao Umamaheswara M. (1987): Seaweed Research and Utilization in India. Indian Council of Agriculture Research, CMFRI bulletin 41.
  26. Xun, Y., Shu-Ping, Z., Wei, Z., Hong-You, C., Xiao-Dong, D., Xin-Mei, L., Zi-Feng, Y. (2007): Aqueous dye adsorption on ordered malodorous carbons. Journal of Colloid Interface Science., 310: 83?89.
  27. Latinwo, G. K., Jimoda, L. A., Agarry, S. E., Adeniran, J. A. (2015): Biosorption of some heavy metals from Textile Wastewater by Green Seaweed Biomass. Univ J of Env Res and Technol., 5 (4): 210-219.
  28. Brahmbhatt, N., Patel, R. V., Jasrai, R. T. (2013): Accumulation of Chromium by Spirogyra Sp. And it?s Effect on Its Biochemical Constituents. Int J of Green and Herbal Chem., 2 (1): 15-19.
  29. Kousha, M., Daneshvar, E.,Sohrabi, M. S., Jokar, M., Bhatnagar, A. (2012): Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chemical Engineering Journal., 192: 67-76.
  30. Salima, A., Benaouda, B., Noureddine, B., Duclaux, L. (2013): Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Res., 47 (10): 3375-88.
  31. Patel, G. G., Doshi, H. V., Thakur, M. C. (2016): Biosorption and equilibrium study of Copper by Marine seaweeds from North West Cost of India. J of EnvSci, Toxic and Food Technol., 10 (7): 54-64.
  32. Agarry, S. E., Ogunleye, O. O., Ajani, O. A. (2015): Biosorptive removal of cadmium (II) ions from aqueous solution by chemically modified onion skin: batch equilibrium, kinetic and thermodynamic studies. ChemEng Communications., 202: 655-673.
  33. Grote, B. (2016): Bioremediation of aquaculture wastewater: evaluating the prospects of the red alga Palmaria palmata (Rhodophyta) for nitrogen uptake. Journal of Applied Phycology., 1-8. DOI:1007/s10811-016-0848-x
  34. Ibrahim, W. M., Hassan, A. F., Azab, Y. A. (2016): Biosorption of toxic heavy metals from aqueous solution by activated carbon. Egyptian Journal of Basic and Applied Sciences., 3 (3): 241-249. http://dx.doi.org/10.1016/j.ejbas.2016.07.005
  35. Aravindhan, R., Rao, J. R., Nair, B. U. (2007): Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J of Haz Mat., 142: 68?76.
  36. Dobaradaran, S., Zazuli M. A., Keshtkar, M., Noshadi, S., Khorsand, M., Ghasemi, F. F., Karbasdehi, A. L., Soleimani F. (2016): Biosorption of fluoride from aqueous phase onto Padina sanctaecrucis algae: evaluation of biosorption kinetics and isotherms. Desa and Wat Treat., 1-12.
  37. Rathod, M., Mody, K., Basha, S. (2014): Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. J of Cleaner Prod., 1-10.
  38. Tan, I. A. W., Hameed, B. H., Ahmad, A. L. (2007): Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. ChemEng J., 127: 111?119.
  39. Crini, G. (2006): Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol., 97: 1061?1085.
  40. Pandimurugan, R., Thambidurai, S. (2016): Synthesis of seaweed-ZnOPANI hybrid composite for adsorption of methylene blue dye. J of EnvChem Eng., 4(1): 1332-1347.
  41. Hameed, B. H., Din, A. T. M., Ahmad, A. L. (2007): Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater., 141: 819?825.
  42. Langmuir, I. (1918): The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc., 40: 1361?1403.
  43. Mall, I. D., Srivastava, V. C., Agarwal, N. K., Mishra, I. M. (2005): Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere., 61: 492?501
  44. Lagergren, S. (1898): Zurtheorie der sogenannten adsorption gelosterstoffe, KungligaSvenskaVetenskapsakademiensHandlingar., 24 (4): 1?39
  45. Ho, Y. S. (1995): Adsorption of Heavy Metals from Waste Streams by Peat, PhD Thesis, University of Birmingham, Birmingham, UK.
  46. Ghoneim, M. M., El-Desoky, H. S., El-Moselhy, K. M., Amer, A., Abou el-Naga, E. H., Mohamedein, L. I., Al-Prol, A. E. (2014): Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egyptian J of Aqatic Res., 40: 235-242.
  47. Uluozlu, O. D., Sari, A., Tuzen, M. (2010): Biosorption of antimony from aqueous solution by lichen (phusicatribacia). ChemEng J., 163: 382-388.
  48. Ertugay, N., Bayhan, Y. K. (2008): Biosorption of Cr from aqueous solutions by biomass of Agricusbisporus. J of Haz Mater., 154: 432-439.
  49. Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Bao, N., Gao, B. Y., Zhang, H. Y. (2008): Biosorption of malachite green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies. Biores Technol., 99: 3475-3483.

[Krishna Y. Pandya, Rinku V. Patel, Rakesh T. Jasrai and Nayana Brahmbhatt. (2017); OPTIMIZATION OF Cr AND Cu BIOSORPTION BY GREEN MARINE ALGAE Caulerpa racemosaVar. Cylindracea & Ulva lactuca Int. J. of Adv. Res. 5 (Aug). 923-939] (ISSN 2320-5407). www.journalijar.com


KRISHNA PANDYA
Research Student Environmental Science V.P. Science College V.V. Nagar- 388120

DOI:


Article DOI: 10.21474/IJAR01/5138      
DOI URL: https://dx.doi.org/10.21474/IJAR01/5138