10Sep 2017

SCAFFOLDS IN REGENERATIVE ENDODONTICS: A REVIEW.

Crossref Cited-by Linking logo
  • References
  • Cite This Article as
  • Corresponding Author
  1. Bansal R, Bansal R. Regenerative endodontics: A state of the art. Indian J Dent Res 2011; 22:122-31.
  2. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J Endod 2004; 30:196-200.
  3. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: A review of current status and a call for action. J Endod 2007; 33:377-90.
  4. Gathani KM, RaghavendraSS.Dent Res J (Isfahan). 2016 Sep; 13(5):379-386
  5. Goldberg M, Septier D, Bourd K, Menashi S. Role of matrix proteins in signalling and in dentin and enamel mineralisation. ComptesRendusPalevol 2004; 3:573-81.
  6. Du C, Moradian-Oldak J. Tooth regeneration: Challenges and opportunities for biomedical material research. Biomed Mater 2006; 1:R10-7.
  7. Greenwood HL, Thorsteinsdottir H, Perry G, et al. Regenerative medicine: new opportunities for developing countries. Int J Biotechnol 2006;8:60?77
  8. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;30:29 ?39
  9. . Nakashima M. Tissue engineering in endodontics. AustEndod J 2005; 31:111?3. 138.
  10. Oringer RJ Biological mediators for periodontal and bone regeneration. CompendContinEduc Den. 2002; 23:501? 4, 506 ?10. 139.
  11. Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Engl 2004; 32:1728 ? 43.
  12. .Tabata Y. Nanomaterials of drug delivery systems for tissue regeneration. Methods MolBiol 2005; 300:81? 100.
  13. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2005; 2:303?17.
  14. Kitasako Y, Shibata S, Pereira PN, Tagami J. Short-term dentin bridging of mechanically-exposed pulps capped with adhesive resin systems. Oper Dent 2000; 25:155? 62.
  15. Mjor IA, Dahl E, Cox CF. Healing of pulp exposures: an ultrastructural study. J Oral Pathol Med 1991; 20:496
?501.
  1. Silva TA, Rosa AL, Lara VS. Dentin matrix proteins and soluble factors: intrinsic regulatory signals for healing and resorption of dental and periodontal tissues? Oral Dis 2004;10:63?74
  2. Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffoldsfor tissue engineering. Biotechnology (N Y) 1994; 12:689?93.
  3. Almeida HA, Ba? rtolo PJ. Structural and vascular analysis of tissue engineering scaffolds, part 2: topology optimisation. Methods MolBiol 2012; 868:209?36.
  4. Marei M. Regenerative Dentistry. San Rafael, Calif: Morgan & Claypool; 2010.
  5. Arnal-Pastor M. New Scaffolding Materials for Regeneration of Infarcted Myocardium [Doctoral Thesis]. UniversitatPolitecnica de Valencia, Valencia, Spain. 2013.
  6. Ostby BN. Th e role of the blood clot in endodontic therapy. An experimental histologic study. ActaOdontolScand 1961;19:324-53
  7. Torneck CD. Reaction of rat connective tissue to polyethylene tube implants. I. Oral Surg Oral Med Oral Pathol 1966; 21:379-87.
  8. Thibodeau B, Trope M. Pulp revascularization of a necrotic infected immature permanent tooth: Case report and review of the literature. Pediatr Dent 2007; 29:47-50.
  9. Harrison JW, Jurosky KA. Wound healing in the tissues of the periodontium following periradicular surgery. I. Th e incisional wound. J Endod 1991; 17:425-35.
  10. Marx RE. Platelet-rich plasma: Evidence to support its use. J Oral MaxillofacSurg 2004; 62:489-96.
  11. Saber SE. Tissue engineering in endodontics. J Oral Sci 2009; 51:495-507.
  12. Sepp? H, Grotendorst G, Sepp? S, Schiff mann E, Martin GR. Platelet-derived growth factor in chemotactic for fi broblasts. J Cell Biol 1982; 92:584-8.
  13. Webb NJ, Bottomley MJ, Watson CJ, Brenchley PE. Vascular endothelial growth factor (VEGF) is released from platelets during blood clotting: Implications for measurement of circulating VEGF levels in clinical disease. ClinSci (Lond) 1998; 94:395-404.
  14. Freymiller EG, Aghaloo TL. Platelet-rich plasma: Ready or not? J Oral MaxillofacSurg 2004; 62:484-8.
  15. Marx RE; Platelet-rich plasma: evidence to support its use. J Oral MaxillofacSurg 2004; 62: 489?496. 4.
  16. Marx RE; Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent 2001; 10: 225? 228.
  17. Lata P, Chhabra A, Jindal V, Kaur D, Thakur AK. In-vivo clinical evaluation of regenerative endodontics in immature necrotic permanent teeth with open apex. Dent J Adv Stud. 2015; 3:26?33.
  18. Jadhav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: A pilot clinical study. J Endod. 2012; 38:1581?7.
  19. Kaur P, Puneet VD. Platelet-rich plasma: A novel bioengineering concept. Trends BiomaterArtif Organs. 2011; 25:86?90.
  20. Keswani D, Pandey RK. Revascularization of an immature tooth with a necrotic pulp using platelet-rich fi brin: A case report. IntEndod J 2013; 46:1096-104.
  21. Choukroun J, Adda F, Schoeffler C, Vervelle A. Uneopportunit? en paro-implantologie: Le PRF. Implantodontie. 2001; 42:55?62.
  22. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral RadiolEndod. 2006; 101(3):e45?e50.
  23. DohanEhrenfest DM, de Peppo GM, Doglioli P, Sammartino G. Slow release of growth factors and thrombospondin-1 in Choukroun?s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors. 2009; 27(1):63?69.
  24. Khiste SV, Tari RN. Platelet-Rich Fibrin as a Biofuel for Tissue Regeneration. ISRN Biomaterials. Vol. 2013, Article ID 627367, 6 pages, 2013. doi:10.5402/2013/627367.
  25. Borie E, Garc?aOliv? D, Orsi IA, Garlet K, Weber B, Beltr?n V, Fuentes R. Platelet-rich fibrin application in dentistry: a literature review. Int J ClinExp Med. 2015; 8(5):7922?7929.
  26. American Association of Endodontists. AAE Clinical Considerations for Regenerative Procedure.Revised4-12-
  27. https:// www.aae.org/uploadedfiles/publications_and_research/
research/currentregenerativeendodonticconsiderations.pdf. Accessed January 19, 2017
  1. Mishra N, Narang I, Mittal N. Platelet-rich fi brin-mediated revitalization of immature necrotic tooth. ContempClin Dent 2013; 4:412-5.
  2. Jain RA. Th e manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21:2475-90.
  3. Mauth C, Huwig A, Graf-Hausner U, Roulet J. Restorative applications for dental pulp therapy. Top Tissue Eng 2007; 3:1-32.
  4. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, PerezAtayde A, Langer R. Selective cell transplantation using bioabsorbableartificial polymers as matrices. J PediatrSurg 1988; 23:3-9.
  5. Atala A, Mooney DJ. Synthetic Biodegradable Polymer Scaff olds. Berlin: Springer; 1997.
  6. Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev 2005; 16:369-76.
  7. Bohl KS, Shon J, Rutherford B, Mooney DJ. Role of synthetic extracellular matrix in development of engineered dental pulp. J BiomaterSciPolym Ed 1998; 9:749-64.
  8. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaff olds for bone tissue engineering. Biomaterials 2006; 27:3413-31.
  9. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fi ber structures for cell attachment and transplantation. J Biomed Mater Res 1993; 27:183-9.
  10. Ma PX, Zhang R. Microtubular architecture of biodegradable polymer scaff olds. J Biomed Mater Res 2001; 56:469-77.
  11. Bakhtiari L, Rezaie HR, Hosseinalipour SM, Shokrgozar MA. Investigation of biphasic calcium phosphate/gelatin nanocompositescaff olds as a bone tissue engineering. Ceram Int 2010;36:2421-6
  12. Mooney DJ, Powell C, Piana J, Rutherford B. Engineering dental pulp-like tissue in vitro. BiotechnolProg 1996; 12:865-8.
  13. Buurma B, Gu K, Rutherford RB. Transplantation of human pulpal and gingival fi broblasts attached to synthetic scaff olds. Eur J Oral Sci 1999; 107:282-9.
  14. N?r JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest 2001;81:453-63
  15. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15:3640?59
  16. Gotlieb EL, Murray PE, Namerow KN, Kuttler S, GarciaGodoy F. An ultrastructural investigation of tissueengineered pulp constructs implanted within endodontically treated teeth. J Am Dent Assoc 2008; 139:457-65.
  17. Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am. 2012; 56:495?520.
  18. Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 2012;56:495-520
  19. Bertoldi C, Zaffe D, Consolo U. Polylactide/polyglycolide copolymer in bone defect healing in humans. Biomaterials 2008; 29:1817-23.
  20. El-Backly RM, Massoud AG, El-Badry AM, Sherif RA, Marei MK. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly (lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. AustEndod J 2008; 34:52-67.
  21. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo Tissue Eng Part A 2010; 16:605-15.
  22. Denissen H, Montanari C, Martinetti R, van Lingen A, van den Hooff A. Alveolar bone response to submerged bisphosphonatecomplexed hydroxyapatite implants. J Periodontol 2000; 71:279-86.
  23. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. ActaBiomater 2011; 7:2355-73.
  24. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. ActaBiomater 2011; 7:2355-73.
  25. Hayakawa S, Li Y, Tsuru K, Osaka A, Fujii E, Kawabata K. Preparation of nanometer-scale rod array of hydroxyapatite crystal. ActaBiomater 2009; 5:2152-60.
  26. Yoshikawa M, Tsuji N, Shimomura Y, Hayashi H, Ohgushi H, editors. Effects of laminin for osteogenesis in porous hydroxyapatite. MacromolSymp 2007; 253:172-8.
  27. Ando Y, Honda MJ, Ohshima H, Tonomura A, Ohara T, Itaya T, et al. Th e induction of dentin bridge-like structures by constructs of subcultured dental pulp-derived cells and porous HA/TCP in porcine teeth. Nagoya J Med Sci 2009; 71:51-62.
  28. Mastrangelo F, Nargi E, Carone L, Dolci M, Caciagli F, Ciccarelli R, et al. Tridimensional response of human dental follicular stem cells onto a synthetic hydroxyapatite scaff old. J Health Sci Tokyo 2008; 54:154.
  29. Li B, Chen X, Guo B, Wang X, Fan H, Zhang X. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. ActaBiomater 2009; 5:134-43.
  30. Daculsi G, LeGeros R. Tricalcium phosphate/hydroxyapatite biophasic calcium phosphates. Handbook of Bioceramics and their Clinical Applications. London: Woodhead Publishing Ltd.; 2008. p. 395.
  31. Nilen RW, Richter PW. Th e thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J Mater Sci Mater Med 2008; 19:1693-702.
  32. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81:531-5.
  33. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 2003; 82:976-81.
  34. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 2006;1:e79
  35. Kim HW, Kim HE, Knowles JC. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. AdvFunct Mater 2006; 16:1529-35.
  36. Conzone SD, Day DE. Preparation and properties of porous microspheres made from borate glass. J Biomed Mater Res A 2009; 88:531-42.
  37. Jung SB, Day DE. Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite. PhysChem Glasses Eur J Glass SciTechnol Part B Eur J Glass SciTechnol Part B 2009;50:85-8.
  38. Liu X, Pan H, Fu H, Fu Q, Rahaman MN, Huang W. Conversion of borate-based glass scaff old to hydroxyapatite in a dilute phosphate solution. Biomed Mater 2010; 5:15005.
  39. Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaff olds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 2010; 95:164-71.
  40. Bi L, Rahaman MN, Day DE, Brown Z, Samujh C, Liu X, et al. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. ActaBiomater 2013; 9:8015-26.
  41. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295:1014-7.
  42. Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 1998; 69:326-
  43. Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol 1990; 8:71?8.
  44. Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels.Biomaterials 2004; 25:3187-99.
  45. Yuan Z, Nie H, Wang S, et al. Biomaterial selection for tooth regeneration. Tissue Eng Part B Rev 2011; 17:373?88.
  46. Dobie K, Smith G, Sloan AJ, et al. Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 2002; 43:387?90.
  47. Coimbra P, Alves P, Valente TA, et al. Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization.Int J BiolMacromol 2011; 49:573?9.
  48. Kim NR, Lee DH, Chung PH, et al. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 2009;108:e94?100
  49. Yamauchi N, Nagaoka H, Yamauchi S, et al. Immunohistological characterization of newly formed tissues after regenerative procedure in immature dog teeth. J Endod 2011; 37:1636?41.
  50. Srisuwan T, Tilkorn DJ, Al-Benna S, et al. Survival of rat functional dental pulp cells in vascularized tissue engineering chambers. Tissue Cell 2012; 44:111?21.
  51. Yang X, Han G, Pang X, et al. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A 2012. [Epub ahead of print].
  52. Coimbra P, Alves P, Valente TA, et al. Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. Int J BiolMacromol 2011; 49:573?9.
  53. Coimbra P, Ferreira P, de Sousa HC, et al. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int J BiolMacromol 2011; 48:112?8.
  54. Inuyama Y, Kitamura C, Nishihara T, et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B ApplBiomater 2010; 92:120?8.
  55. Friedman PM, Mafong EA, Kauvar AN, et al. Safety data of injectable nonanimal stabilized hyaluronic acid gel for soft tissue augmentation. DermatolSurg 2002; 28:491?4.
  56. Galler KM, Cavender AC, Koeklue U, et al. Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen Med 2011; 6:191?200.
  57. Yang KC, Wang CH, Chang HH, et al. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue EngRegen Med 2011. [Epub ahead of print].
  58. Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. OrthodCraniofac Res 2005; 8:150 ? 61.
  59. Trojani C, Weiss P, Michiels JF, et al. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 2005; 26:5509 ?17.
  60. Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engl 2004; 10:1316 ?22.
  61. Alhadlaq A, Mao JJ. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am 2005; 87:936 ? 44. 158.
  62. Desgrandchamps F. Biomaterials in functional reconstruction. CurrOpinUrol 2000; 10:201? 6.
  63. Luo Y, Shoichet MS. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 2004; 3:249 ?53.
  64. Dusseiller MR, Schlaepfer D, Koch M, Kroschewski R, Textor M. An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells. Biomaterials 2005; 26:5917?25.
  65. Sanjana NE, Fuller SB. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods 2004; 136:151? 63.
  66. Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Engl 2005; 33:121?30.
  67. Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 2004; 6:139 ? 47.

[Thouseef Ch, Nithin Suvarna, Harish K Shetty, Vidhyadhara Shetty and Dhiyouf Ali. (2017); SCAFFOLDS IN REGENERATIVE ENDODONTICS: A REVIEW. Int. J. of Adv. Res. 5 (Sep). 415-423] (ISSN 2320-5407). www.journalijar.com


THOUSEEF CH
POST GRADUATE STUDENT IN CONSERVATIVE DENTISTRY AND ENDODONTICS

DOI:


Article DOI: 10.21474/IJAR01/5345      
DOI URL: http://dx.doi.org/10.21474/IJAR01/5345