30Sep 2017

PRODUCTION AND CHARACTERIZATION OF POROUS KAOLINITE MODIFIED PELLETS FOR SLOW RELEASE PHEROMONE.

  • Facultad Polit?cnica, Universidad Nacional de Asunci?n, San Lorenzo, Paraguay, P.O. Box 2111SL.
  • Centro para el Desarrollo de la Investigaci?n Cient?fica-CEDIC (FMB/D?az Gill Medicina Laboratorial), Manduvir? 635, Asunci?n, Paraguay.
  • Laborat?rio de Tecnologia de P?s, Divis?o de Processamento e Caracteriza??o de Materiais, Instituto Nacional de Tecnologia, Av. Venezuela, 82/602, Rio de Janeiro (RJ), Brasil.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Natural and modified kaolinite minerals are widely used in industrial applications and environmental protection, in particular, sorbent processes. The aim of this work consists in proposing an alternative application for the kaolinite as a slow release device of pheromone benzaldehyde. Porous kaolinite pellets were produced by uniaxial compression molding under a pressure of 145 MPa, approximately. The pellets were sintered at 900oC and characterized by X-ray diffraction (XRD), Energy Dispersive X-ray fluorescence spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). Afterwards, these pellets were impregnated with benzaldehyde, a synthetic pheromone used to attract kissing bugs. The pellets were analyzed by FTIR, after the impregnation process, in order to verify the presence of the sorbed benzaldehyde. In addition, bioassays were performed in laboratory scale, on T. infestans nymphs and adults for evaluating the maximum release period and the attractant efficiency of pellets using impregnated pellets and control ones. The results of the release of benzaldehyde analysis showed existence of benzaldehyde after sixty days and the results of bioassays release showed more effectiveness in attraction of adult insects than nymph instars, suggesting that the porous kaolinite pellets are a promising alternative in trap system applications in the vector control to T. infestans, using benzaldehyde.


  1. Akasay I.A., D.M. Dabbs, and M. Sarikaya. 1991. Mullite for structural, electronic, and optical applications. J. Am. Ceram. Soc. 74:10:2343-58.
  2. Ibrahim H.S., T.S. Jamil, and E.Z. Hegazy. 2010. Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models. J. Hazard. Mater. 182:842-7.
  3. Pt?ček P., Lang K., ?oukal F., Opravil T., Tverd?k L., and Novotn? R. 2014. Preparation and properties of nanostructured ceramic foam from kaolinite. Powder Tech. 253:29-34.
  4. Duarte-Silva R., M.A. Villa-Garc?a, M. Rendueles, M. D?az. 2014. Structural, textural and protein adsorption properties of kaolinite and surface modified kolinite adsorbents. Appl. Clay Sci. 90;73-80.
  5. He M.C., J. Zhao, S.X. Wang. 2013. Adsorption and diffusion of Pb(II) on the kaolinite (001) surface: a density-functional theory study. Appl Clay Sci. 85;74-79.
  6. Jin X., M. Jiang, J. Du, Z. Chen. 2014. Removal of Cr(VI) from aqueous solution by surfactant-modified kaolinite. J Ind Eng Chem. 20:5:3025-32.
  7. PriscilaS., M.M. Zuy, A.L.S.R. Marco, G. T. Let?cia,?M.P. R?sia, R.M.V. Paulo. 2013. Study of chemical and thermal treatment of kaolinite and its influence on the removal of contaminants from mining effluents. J Environ Manage. 128:480-8.
  8. Murray H.H., 2007. Applied clay mineralogy: occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. 1st Edition, Elsevier, UK, chapter 2, 7-33.
  9. Rajoriya R.K., B. Prasad, I.M. Mishra, K.L. Wasewar. 2007. Adsorption of benzaldehyde on granular activated carbon: kinetics, equilibrium, and thermodynamic. Chem Biochem Eng Q, 21:3:219-226.
  10. Torto B., D. Obeng-Ofori, P.E.N. Njari, A. Hassanali, H. Amiani. Aggregation pheromone system of adult gregarious desert locust Schistocerca gregaria (Forskal). J of Chem Ecol. 20:7:1749-62.
  11. Leal W.S., Y. Nacano, Y. Kuwahara, H. Nakao, T. Suzuki. 1988. Pheromone study of acarid mites XVII. Identification of 2-hydroxy-6-methyl-benzaldehyde as the alarm pheromone of the acarid mite Tyrophagus perniciosus (acarina:acaride), and its distribution among related mites. Appl Ent Zool, 23:4:422-7.
  12. Fontan A., A.P. Gonz?lez, A. Martinez, R.A. Alzogaray, E.N. Zerba, E. N., F. Camps et al. 2002. Attractant volatiles released by female and male Triatoma infestans (Hemiptera: Reduviidae), a vector of Chagas disease: chemical analysis and behavioral bioassay. Journal of Medical Entomology. 39:1: 191-197.
  13. Rojas De Arias A., F. Abad-Franch, N. Acosta, E. L?pez, N. Gonz?lez, E. Zerba et al. 2012. Post-control survaillance of triatoma infestans and Triatoma sordia with chemically?baited sticky traps. Plos Negl Trop Dis. 6:9:1822.
  14. Silvia, A. 2012. Procesamiento y producci?n de pastillas porosas para la lenta liberaci?n de feromonas. Tesis de Maestr?a. Facultad Polit?cnica ?UNA, San Lorenzo. Paraguay.
  15. Herbillon, A. J., M.M. Mestdagh, L. Vielvoye, E.G. Derouane. 1976. Iron in kaolin with special reference to kaolin from tropical soils. Clay Minerals. 11: 3: 20-220.
  16. McConville C.J., W.E. Lee. 2005. Microstructural development on firing illite and smectite clays compared with that kaolinite. J Am Ceram Soc. 88:2267-76.
  17. Saikia, B. J. and G. Parthasarathy. 2010. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics. 1:4: 206-210.
  18. Ilić, B. R., A.A. Mitrović, L.R. Miličić, 2010. Thermal Treatment of kaolin clay to obtain metakaoline, Hem. Ind. 64:4:351-356.
  19. Yuan P, F. Annabi-Bergaya, Q. Tao, M. Fan, Z. Liu, J. Zhu, et al. 2008. A combination study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. Jour. of Coll. And Interf. Science. 324:142-149.
  20. Svedberg, U. 2004. Fourier transform infrared spectroscopy in industrial hygiene application. Acta Universitatis Upsaliensis, Uppsala.
  21. Silverstein, R.M., F.X. Webster, D.J. Kiemle. Spectrometric Identification of organic compounds. 7th edition, John Wiley and Sons Inc. New York.
  22. Stepania, S.G., I.D. Reva, E.D. Radchenko and G.G. Sheina. 1996. Infrared spectra of benzoic acid monomers and dimers in argon matrix. Vibrational Spectroscopy. 11, 123-133.
  23. Gallego, M.M.R. and C.V. Fern?ndez. 2006. Laboratorio de qu?mica org?nica. Ed. Universiaria Ram?n Areces. Madrid.
  24. Oinuma, K and H. Hayashi. 1965. Infrared study of mixed-layer clay minerals. AM Mineral. 50: 1213-1227.
  25. Jose A.C.C., T.W. Christopher, D.A. Michael. 2011. ATR-IR study of the adsorption of 2?-hydroxyacetophenone and benzaldehyde on MgO. Catalysis Communications. 16:198?204.
  26. Cruz-L?pez L., E.A. Malo, J.C. Rojas. Aggregation pheromone in five species of Triatominae (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 88:535?539.

[M. Monteiro, A. Matos, S. Aquino, F. Gaona, C. Schaerer, F. Arias, D. Dorigo, M.C. Vega, A. Rojas de Arias, A. A. Ribeiro and M. Varella. (2017); PRODUCTION AND CHARACTERIZATION OF POROUS KAOLINITE MODIFIED PELLETS FOR SLOW RELEASE PHEROMONE. Int. J. of Adv. Res. 5 (9). 1718-1725] (ISSN 2320-5407). www.journalijar.com


Magna Monteiro
Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo.

DOI:


Article DOI: 10.21474/IJAR01/5499       DOI URL: http://dx.doi.org/10.21474/IJAR01/5499


Share this article