22Oct 2017


  • Qatar Foundation, World Innovation Summit for Healthcare (WISH), P.O. Box: 5825, Doha, Qatar and Applied Biomedicine, Doha, Qatar.
  • Qatar Medical Genetics Center (QMGC) and Interim Translational Research Institute (iTRI), HMC, P.O. Box 3050, Doha-Qatar, and Applied Biomedicine, Doha, Qatar.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Extraordinary developments in genomics research, technologies and ensuing knowledge are creating the potential of astonishing changes in both the healthcare and the life sciences sectors. For instance, next generation sequencer technology is technically progressing at a very rapid pace making it multiple folds faster than five years ago. The genomics innovations include the following: 1) Adoption of Next Generation Sequencing (NGS) ? based testing such as Whole Exome and Genomic Sequencing (WES & WGS) in clinical service as a diagnostic test including so-called direct-to-consumer genetic testing services, 2) Moving toward single cell sequencing study in heterogeneous cells and/or genetic make-ups, 3) Evolution of NGS ? based RNA sequencing field, i.e., measuring the gene expression changes along with non-coding RNA (Whole Transcriptome Sequencing), 4) Pharmacogenomics, and 5) Circulating Tumor Cells (CTCs), circulating cell-free DNA (cfDNA), and mitochondrial DNA (mtDNA) as non-invasive real-time circulating blood biomarkers surrogates for tissues. This paper looks at the impact of clinical genomics disruptive innovations on the healthcare system in order to provide better diagnosis and treatment. The genomic trends will not only transform point-of-care but also it will further facilitate progression towards personalized medicine to offer tailored and/or targeted treatment to patients, i.e., personalized therapy with the promise to improve patient?s lives. A special reference will be made to the Gulf region genome projects and personalized healthcare plans for ultimately to offer better prevention, diagnosis and treatment for its population. In particular, Qatar?s efforts in the genomic medicine area will be emphasized including the private Applied Biomedicine Initiative (ABI).

  1. Ahmed, S., Zhou, Z., Zhou, J., & Chen, S. Q. (2016). Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genomics Proteomics Bioinformatics, 14(5), 298-313. doi:10.1016/j.gpb.2016.03.008
  2. Al-Dewik, N. (2013). Molecular stratification of myeloproliferative neoplasms (MPNs) patients in the State of Qatar according to World Health Organization (WHO) 2008 Criteria. Qatar Foundation Annual Research Forum Proceedings, BIOP 0190. doi:10.5339/qfarf. 2013. BIOP-0190
  3. Al-Dewik, N., & Moghaddam, P. (2017). Nutrigenomics: A Transnational Initiative to Personalizing Individuals? Lifestyle Based on Genetic Makeup. Paper presented at the Conference on Understanding molecular mechanisms underlying cardiovascular disease, Diabetes, Obesity and Stroke (CUDOS 2017), Shangri-La Hotel Diplomatic Area.
  4. Al-Dewik, N. I., Cassinat, B., Kiladjian, J.-J., Knuth, A., & Yassin, M. A. (2014). Targeted Exome Sequencing Identifies Novel Mutations in Familial Myeloproliferative Neoplasms Patients in the State of Qatar. Blood, 124(21), 5570-5570.
  5. Al-Mulla, F. (2014). The locked genomes: A perspective from Arabia. Appl Transl Genom, 3(4), 132-133. doi:10.1016/j.atg.2014.09.012
  6. Al-Shamsi, A., Hertecant, J. L., Souid, A. K., & Al-Jasmi, F. A. (2016). Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates. Orphanet J Rare Dis, 11(1), 94. doi:10.1186/s13023-016-0474-3
  7. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., . . . Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457-465.
  8. Astley, S. B. (2007). An introduction to nutrigenomics developments and trends. Genes & Nutrition, 2(1), 11-13. doi:10.1007/s12263-007-0011-z
  9. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297.
  10. Basak, R., Nair, N. K., & Mittra, I. (2016). Evidence for cell-free nucleic acids as continuously arising endogenous DNA mutagens. Mutat Res, 793-794, 15-21. doi:10.1016/j.mrfmmm. 2016.10.002
  11. Baxter, E. J., Scott, L. M., Campbell, P. J., East, C., Fourouclas, N., Swanton, S., Cancer Genome, P. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, 365(9464), 1054-1061. doi:10.1016/S0140-6736(05)71142-9
  12. Baylin, S. B., & Jones, P. A. (2011). A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer, 11(10), 726-734. doi:10.1038/nrc3130
  13. Bertier, G., Hetu, M., & Joly, Y. (2016). Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users\' views. BMC Med Genomics, 9(1), 52. doi:10.1186/s12920-016-0213-6
  14. Bonetta, L. (2010). Whole-genome sequencing breaks the cost barrier. Cell, 141(6), 917-919. doi:10.1016/j.cell.2010.05.034
  15. Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., . . . Greenleaf, W. J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523(7561), 486-490. doi:10.1038/nature14590
  16. Casneuf, T., Van de Peer, Y., & Huber, W. (2007). In situ analysis of cross-hybridisation on microarrays and the inference of expression correlation. BMC Bioinformatics, 8, 461. doi:10.1186/1471-2105-8-461
  17. (2013). Circulating Tumor Cell Kit Retrieved from www.cellsearchctc.com
  18. Charng, W.-L., Karaca, E., Coban Akdemir, Z., Gambin, T., Atik, M. M., Gu, S., . . . Lupski, J. R. (2016). Exome sequencing in mostly consanguineous Arab families with neurologic disease provides a high potential molecular diagnosis rate. BMC Medical Genomics, 9, 42. doi:10.1186/s12920-016-0208-3
  19. Chu, Y., & Corey, D. R. (2012). RNA Sequencing: Platform Selection, Experimental Design, and Data Interpretation. Nucleic Acid Therapeutics, 22(4), 271-274. doi:10.1089/nat.2012.0367
  20. (2017). Synopsis of the Research Project ?Indigenizing Genomics in the Gulf Region (IGGR): The Missing Islamic Bioethical Discourse. Retrieved from https://www.cilecenter.org/en/news/synopsis-research-project-indigenizing-genomics-gulf-region-iggr-missing-islamic-bioethical-discourse/
  21. (2017). Conference on Understanding molecular mechanisms underlying cardiovascular disease, Diabetes, Obesity and Stroke Conference and Workshop Program. Retrieved from http://events.sidra.org/event/cudos-2017/
  22. Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson, K. L., . . . Shendure, J. (2015). Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science, 348(6237), 910-914. doi:10.1126/science.aab1601
  23. Darley-Usmar, V. (2004). The powerhouse takes control of the cell; the role of mitochondria in signal transduction. Free Radic Biol Med, 37(6), 753-754. doi:10.1016/j.freeradbiomed.2004.05.026
  24. Eberwine, J., Sul, J. Y., Bartfai, T., & Kim, J. (2014). The promise of single-cell sequencing. Nat Methods, 11(1), 25-27.
  25. El Bashir, H., Dekair, L., Mahmoud, Y., & Ben-Omran, T. (2015). Neurodevelopmental and Cognitive Outcomes of Classical Homocystinuria: Experience from Qatar. JIMD Rep, 21, 89-95. doi:10.1007/8904_2014_394
  26. El-Khadem, H., Ben-Omran, T., Al-Dewik , N., Kruger, W., Henk, B., & Nasrallah, G. (2017). Novel therapies for Qatari patients with Homocystinuria. Paper presented at the The Second Annual Health Research Symposium at Qatar University, atar University, College of Medicine - Bldg. (H12) - Room 126,.
  27. Fattahi, Z., Kalhor, Z., Fadaee, M., Vazehan, R., Parsimehr, E., Abolhassani, A., . . . Najmabadi, H. (2016). Improved diagnostic yield of neuromuscular disorders applying clinical exome sequencing in patients arising from a consanguineous population. Clin Genet. doi:10.1111/cge.12810
  28. Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet, 17(6), 333-351. doi:10.1038/nrg.2016.49
  29. (2013). Qatar launches genome project.
  30. Gupta, A. K., & Gupta, U. D. (2014). Chapter 19 - Next Generation Sequencing and Its Applications A2 - Verma, Ashish S. In A. Singh (Ed.), Animal Biotechnology (pp. 345-367). San Diego: Academic Press.
  31. Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679-695. doi:10.1016/j.cell.2006.11.001
  32. Hamblin, A., Wordsworth, S., Fermont, J. M., Page, S., Kaur, K., Camps, C., . . . Schuh, A. (2017). Clinical applicability and cost of a 46-gene panel for genomic analysis of solid tumours: Retrospective validation and prospective audit in the UK National Health Service. PLoS Med, 14(2), e1002230. doi:10.1371/journal.pmed.1002230
  33. (2015). The 9th Scientific Conference: Princess Al Jawhara Center for Molecular Medicine:Towards Bahrain Genome Project: Insights from International Experiences. Retrieved from https://sites.google.com/a/agu.edu.bh/aljawhara/events
  34. Hodson, R. (2016). Precision medicine. Nature, 537(7619), S49. doi:10.1038/537S49a
  35. Hood, L., & Flores, M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol, 29(6), 613-624. doi:10.1016/j.nbt.2012.03.004
  36. Hood, L., & Galas, D. (2003). The digital code of DNA. Nature, 421(6921), 444-448. doi:10.1038/nature01410
  37. Iborra, F. J., Kimura, H., & Cook, P. R. (2004). The functional organization of mitochondrial genomes in human cells. BMC Biology, 2, 9-9. doi:10.1186/1741-7007-2-9
  38. James, C., Ugo, V., Casadevall, N., Constantinescu, S. N., & Vainchenker, W. (2005). A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. Trends Mol Med, 11(12), 546-554. doi:10.1016/j.molmed.2005.10.003
  39. Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., . . . Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141-157. doi:10.1261/rna.035667.112
  40. Jin, W., Tang, Q., Wan, M., Cui, K., Zhang, Y., Ren, G., . . . Zhao, K. (2015). Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature, 528(7580), 142-146. doi:10.1038/nature15740
  41. Kralovics, R., Passamonti, F., Buser, A. S., Teo, S. S., Tiedt, R., Passweg, J. R., . . . Skoda, R. C. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med, 352(17), 1779-1790. doi:10.1056/NEJMoa051113
  42. Kralovics, R., Teo, S. S., Buser, A. S., Brutsche, M., Tiedt, R., Tichelli, A., . . . Skoda, R. C. (2005). Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood, 106(10), 3374-3376. doi:10.1182/blood-2005-05-1889
  43. Kukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor protocols, 2015(11), 951-969. doi:10.1101/pdb.top084970
  44. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., . . . International Human Genome Sequencing, C. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921. doi:10.1038/35057062
  45. Levine, R. L., Wadleigh, M., Cools, J., Ebert, B. L., Wernig, G., Huntly, B. J., . . . Gilliland, D. G. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell, 7(4), 387-397. doi:10.1016/j.ccr.2005.03.023
  46. Linnarsson, S., & Teichmann, S. A. (2016). Single-cell genomics: coming of age. Genome Biol, 17, 97. doi:10.1186/s13059-016-0960-x
  47. Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., . . . Ecker, J. R. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315-322. doi:http://www.nature.com/nature/journal/v462/n7271/suppinfo/nature08514_S1.html
  48. Lu, Y.-F., Goldstein, D. B., Angrist, M., & Cavalleri, G. (2014). Personalized Medicine and Human Genetic Diversity. Cold Spring Harbor Perspectives in Medicine, 4(9), a008581. doi:10.1101/cshperspect.a008581
  49. Madsen, A. M. R., Holm, A., Jensen, T. G., Knudsen, E., Lundgaard, H., Skov, M. N., . . . Kemp, M. (2017). Whole Genome Sequencing for identification of the source in hospital-acquired Legionnaires? Disease. Journal of Hospital Infection. doi:https://doi.org/10.1016/j.jhin.2017.04.020
  50. Marian, A. J. (2014). Sequencing Your Genome: What Does It Mean? Methodist DeBakey Cardiovascular Journal, 10(1), 3-6.
  51. Method of the year 2013. (2014). Nat Methods, 11(1), 1.
  52. MOH&P-UAE. (2017). Ministry of Health and Prevention reveals UAE Human Genome Project at ?Arab Health 2017? in Dubai. Retrieved from http://www.moh.gov.ae/en/News/Pages/NewsDetail.aspx?itemID=621
  53. Mooney, S. D. (2015). Progress towards the integration of pharmacogenomics in practice. Hum Genet, 134(5), 459-465. doi:10.1007/s00439-014-1484-7
  54. Muller, M., & Kersten, S. (2003). Nutrigenomics: goals and strategies. Nat Rev Genet, 4(4), 315-322. doi:10.1038/nrg1047
  55. Al-Dewik, Q. F., YK. Naidu, N. Bonnin, E. Verger, B. Cassinat, JJ. Kiladjian, H. El Ayoubi, M. Yassin. (2013). Molecular Classification of Myeloproliferative Neoplasms (MPNs) Patients in the State of Qatar According to World Health Organization (WHO) 2008 Criteria. Paper presented at the The American Society of Human Genetics (ASHG 2013) Annual Meeting, USA.
  56. Nawy, T. (2014). Single-cell sequencing. Nat Methods, 11(1), 18.
  57. (2017). Precision Medicine. Retrieved from https://ghr.nlm.nih.gov/
  58. NIH-NHGRI. (2015). All About The Human Genome Project (HGP). Retrieved from https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/
  59. Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., & Belinsky, S. A. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res, 60(21), 5954-5958.
  60. Pardanani, A. D., Levine, R. L., Lasho, T., Pikman, Y., Mesa, R. A., Wadleigh, M., . . . Tefferi, A. (2006). MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood, 108(10), 3472-3476. doi:10.1182/blood-2006-04-018879
  61. Parr, R. L., & Martin, L. H. (2012). Mitochondrial and nuclear genomics and the emergence of personalized medicine. Hum Genomics, 6, 3. doi:10.1186/1479-7364-6-3
  62. Paterlini-Brechot, P., & Benali, N. L. (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett, 253(2), 180-204. doi:10.1016/j.canlet.2006.12.014
  63. Pikman, Y., Lee, B. H., Mercher, T., McDowell, E., Ebert, B. L., Gozo, M., . . . Levine, R. L. (2006). MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med, 3(7), e270. doi:10.1371/journal.pmed.0030270
  64. Pilotto, A., Panza, F., & Seripa, D. (2011). Pharmacogenetics in geriatric medicine: challenges and opportunities for clinical practice. Curr Drug Metab, 12(7), 621-634.
  65. Płoski, R. (2016). Chapter 1 - Next Generation Sequencing?General Information about the Technology, Possibilities, and Limitations. In Clinical Applications for Next-Generation Sequencing (pp. 1-18). Boston: Academic Press.
  66. (2015). Qatar Science and Technology Park celebrate first Accelerator Programme graduates with a Demo Day. Retrieved from http://www.qstp.org.qa/home/stay-informed/press-release/press-releases-detail/2015/07/01/qatar-science-and-technology-park-celebrate-first-accelerator-programme-graduates-with-a-demo-day
  67. Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., . . . Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341. doi:10.1186/1471-2164-13-341
  68. Rinn, J. L., & Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual review of biochemistry, 81, 10.1146/annurev-biochem-051410-092902. doi:10.1146/annurev-biochem-051410-092902
  69. Riquet, M., Rivera, C., Gibault, L., Pricopi, C., Mordant, P., Badia, A., . . . Le Pimpec Barthes, F. (2014). [Lymphatic spread of lung cancer: anatomical lymph node chains unchained in zones]. Rev Pneumol Clin, 70(1-2), 16-25. doi:10.1016/j.pneumo.2013.07.001
  70. Roses, A. D. (2000). Pharmacogenetics and the practice of medicine. Nature, 405(6788), 857-865. doi:10.1038/35015728
  71. Sadoun, E., Alkuraya, F., Fakhro, K., Zawati, M. n., Ismail, S., & Ben-Omran, T. (2016). GENOMICS IN THE GULF REGION AND ISLAMIC ETHICS. Retrieved from https://www.imperial.ac.uk/media/imperial-college/institute-of-global-health-innovation/Islamic-Ethics-Report-English-(1).pdf
  72. Saudi Mendeliome, G. (2015a). Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol, 16, 134. doi:10.1186/s13059-015-0693-2
  73. Saudi Mendeliome, G. (2015b). Erratum to: Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol, 16, 226. doi:10.1186/s13059-015-0798-7
  74. Saunders, C. J., Miller, N. A., Soden, S. E., Dinwiddie, D. L., Noll, A., Alnadi, N. A., . . . Kingsmore, S. F. (2012). Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units. Science Translational Medicine, 4(154), 154ra135-154ra135. doi:10.1126/scitranslmed.3004041
  75. Schones, D. E., & Zhao, K. (2008). Genome-wide approaches to studying chromatin modifications. Nat Rev Genet, 9(3), 179-191. doi:10.1038/nrg2270
  76. Scott, L. M., Tong, W., Levine, R. L., Scott, M. A., Beer, P. A., Stratton, M. R., . . . Green, A. R. (2007). JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med, 356(5), 459-468. doi:10.1056/NEJMoa065202
  77. Shendure, J. (2008). The beginning of the end for microarrays? Nat Methods, 5(7), 585-587. doi:10.1038/nmeth0708-585
  78. Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nat Biotechnol, 26(10), 1135-1145. doi:10.1038/nbt1486
  79. Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., . . . Kelsey, G. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods, 11(8), 817-820. doi:10.1038/nmeth.3035
  80. Swarup, V., & Rajeswari, M. R. (2007). Circulating (cell-free) nucleic acids--a promising, non-invasive tool for early detection of several human diseases. FEBS Lett, 581(5), 795-799. doi:10.1016/j.febslet.2007.01.051
  81. Tefferi, A., & Vardiman, J. W. (2008). Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia, 22(1), 14-22. doi:10.1038/sj.leu.2404955
  82. van der Vaart, M., & Pretorius, P. J. (2007). The origin of circulating free DNA. Clin Chem, 53(12), 2215. doi:10.1373/clinchem.2007.092734
  83. Vannucchi, A. M., Guglielmelli, P., & Tefferi, A. (2009). Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin, 59(3), 171-191. doi:10.3322/caac.20009
  84. Verger, E., Cassinat, B., Chauveau, A., Dosquet, C., Giraudier, S., Schlageter, M. H., . . . Kiladjian, J. J. (2015). Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood, 126(24), 2585-2591. doi:10.1182/blood-2015-07-659060
  85. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1), 57-63. doi:10.1038/nrg2484
  86. Wetterstrand, K. (2016). DNA Sequencing Costs: Data. Retrieved from http://www.genome.gov/sequencingcostsdata
  87. (2002). Genomics and World Health (92-4-154554-2). Retrieved from Geneva: http://www.who.int/entity/rpc/genomics_report.pdf
  88. Witney, A. A., Cosgrove, C. A., Arnold, A., Hinds, J., Stoker, N. G., & Butcher, P. D. (2016). Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Medicine, 14(1), 46. doi:10.1186/s12916-016-0598-2
  89. Xia, M., Li, H., Ma, Q., Yu, D., Li, J., Zhang, Y., . . . Guo, Y. (2017). Identifying the clonal relationship model of multifocal papillary thyroid carcinoma by whole genome sequencing. Cancer Letters, 396, 110-116. doi:https://doi.org/10.1016/j.canlet.2017.03.012
  90. Yassin, M. A., & Al-Dewik, N. I. (2016). Clinical Exome Sequencing Unravels New Disease Causing Mutations in Myeloproliferative Neoplasms (MPNs): A Pilot Study in Patients from the State of Qatar. Blood, 128(22), 5520-5520.
  91. Yassin, M. A., Al-Dewik, N. I., ElAyoubi, H., & Cassinat, B. (2013). Familial Essential Thrombocythemia Among Qatari Tribes. Blood, 122(21), 5244-5244.
  92. Yavarna T and Al-Dewik, N., Al-Mureikhi, M., Ali, R., Al-Mesaifri, F., Mahmoud, L., Shahbeck, N., . . . Ben-Omran, T. (2015). High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum Genet, 134(9), 967-980. doi:10.1007/s00439-015-1575-0
  93. Zhao, S., Fung-Leung, W. P., Bittner, A., Ngo, K., & Liu, X. (2014). Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One, 9(1), e78644. doi:10.1371/journal.pone.0078644

[M. Walid Qoronfleh and Nader I Al-Dewik. (2017); GENOMICS MEDICINE INNOVATIONS: TRENDS SHAPING THE FUTURE OF HEALTHCARE AND BEYOND. Int. J. of Adv. Res. 5 (10). 1310-1325] (ISSN 2320-5407). www.journalijar.com

M. Walid Qoronfleh, Ph.D., MBA
Qatar Foundation, World Innovation Summit for Healthcare (WISH), P.O. Box: 5825, Doha, Qatar


Article DOI: 10.21474/IJAR01/5649       DOI URL: http://dx.doi.org/10.21474/IJAR01/5649

Share this article