04Apr 2018

COPPER NANOPARTICLES OBTAINED BY ARC DISCHARGE METHOD: SYNTHESIS, CHARACTERIZATION, AND PROPERTIES.

  • Physics Department, Faculty of Science, Alexandria University, PO 21511 Alexandria, Egypt.
  • Department of Medical Equipment Technology, Faculty of Allied Medical Science, Pharos University,
  • Alexandria, Egypt.
  • Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon.
  • Advanced Technology and New Materials Research Institute (ATNMRI), City for Scientific Research and Technological Applications (SRTA-CITY), Alexandria, Egypt.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Our objective in this paper is to study the effect of the current on the fabrication copper nanoparticles Cu- NPs and its effect on the yield and to investigate a new technique for plasma preparation of nanoparticles. A new instrument, which uses a three-phase current to support a double-arc discharge method for generating the plasma and evaporate the solids, is described. The crystal structure of nanoparticles, which was examined by X-ray diffraction XRD, shows that diffraction peaks for the Cu- NPs indicate that they are crystalline in nature. The morphology of the product was examined by Scanning Electron Microscope (SEM). From the micrograph, it was observed that the nanoparticles size ranges from 44 to123 nm. The particle size analyzer gives the size distributions with an overall sizing range. The particle size analyzer (PSA) constituents with SEM (the particles size ranges from 30-128 nm). The ultraviolet-visible (UV?Vis) spectrometry contributed to the analysis of size and optical properties of the nanoparticles through each current value (from 30A-110A). Fourier transform infrared (FTIR) spectroscopy analysis (4500 - 500 cm−1) confirmed the presences of Cu- NPs by an appearance of no sharp peaks for any functional group. The developed technique was shown to be suitable for the preparation of Cu- NPs of different sizes. However, a scale-up of production rate often leads to an increase in particle size and broadening of size distribution.


  1. MontaserA, Golightly DW (1992) Inductively Coupled Plasmas in Analytical Atomic Spectrometry. VCH Publishers?Inc. New York
  2. Mohamed MM (1989) Ph.D. Thesis, Osaka University, Japan
  3. Park SJ, Lazarides AA, Mirkin, CA, Letsinger RL (2001) Directed Assembly of Periodic Materials from Protein and Oligonucleotide-Modified Nanoparticle Building Blocks.?Angewandte Chemie International Edition?40(15):2909-2912
  4. Ponce AA, labunde KJ (2005) Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis.?Journal of Molecular Catalysis AChemical225 (1):1-6
  5. Pferiffer T V, Feng J, Schmidt-ott A (2004) New development in spark production of nanoparticles 25(1):56-70
  6. Siegel, Richard W, Evelyn Hu, eds(1999)?Nanostructure Science and Technology: R & D Status and Trends in Nanoparticles, Nanostructured Materials and Nanodevices. Springer Science & Business Media
  7. Nehra V, Kumar A, Dwivedi HK (2008) Atmospheric non-thermal plasma sources.?International Journal of Engineering?2(1):53-68
  8. Yao WT, Yu SH, Zhou Y, Jiang J, Wu QS, Zhang L, Jiang J(2005). Formation of uniform CuO nanorods by spontaneous aggregation Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid− liquid phase arc discharge process. The Journal of Physical Chemistry B(29):14011-6
  9. Qin C, Coulombe S(2007) Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process. Plasma Sources Science and Technology (2):240
  10. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Reddy BV, Raju BD (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest Journal of Nanomaterials and Biostructures6(1):181-6
  11. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov KK (2008). Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. Journal of Applied Physics 103(9):094318
  12. Akita S, Kamo S, Nakayama Y (2002) Diameter control of arc produced multiwall carbon nanotubes by ambient gas cooling. Japanese journal of applied physics 41(4): L487
  13. Tsuruoka T, Kumazaki S, Osaka I, Nawafune H, Akamatsu K (2013). Synthesis of Polystyrene-based Nanocomposite Thin Films with Domain Structure Consisting of Au Nanoparticles. In?Journal of Physics: Conference Series (Vol. 417, No. 1, p. 012020). IOP Publishing.
  14. Xie SY, Ma ZJ, Wang CF, Lin SC, Jiang ZY, Huang RB, Zheng LS (2004) Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution a combination of physical and chemical processes. Journal of Solid State Chemistry 177(10):3743-7
  15. Rahaghi SH, Poursalehi R, Miresmaeili R (2015) optical properties of Ag-Cu alloy nanoparticles synthesized by DC arc discharge in liquid. Procedia Materials Science (11) 738-42
  16. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas. Atomic Spectroscopy 61(1):2-30
  17. Celik C, Addona T, Boulos MI, Chen G, Davis HJ, inventors; Noranda Inc, assignee. Method and transferred arc plasma system for production of fine and ultrafine powders. United States patent US 6,379,419. 2002 Apr 30
  18. Mahoney W, Andres RP (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporation. Materials Science and Engineering 204(1-2):160-4
  19. F?rster H, Wolfrum C, Peukert W (2012) Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. Journal of Nanoparticle Research: 14(7):926
  20. Munz RJ, Addona T, da Cruz AC (1999) Application of transferred arcs to the production of nanoparticles. Pure and Applied Chemistry 71(10)1889-97
  21. Lee JG, Li P, Choi CJ, Dong XL (2010) Synthesis of Mn?Al alloy nanoparticles by plasma arc discharge. Thin Solid Films 519(1):81-5
  22. Kassaee MZ, Buazar F (2009) Al nanoparticles impact of media and current on the arc fabrication. Journal of manufacturing processes 11(1):31-7
  23. Scott JH, Majetich SA (1995). Morphology, structure, and growth of nanoparticles produced in a carbon arc. Physical Review B 52(17):12564
  24. ?varcov? S, Koč? E, Bezdička P, Hradil D, Hradilov? J (2010). Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Analytical and bioanalytical chemistry 398(2):1061-76.
  25. Langford JI, Wilson AJ (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of Applied Crystallography 11(2):102-13
  26. Shokr M. Pn CCD Response to Hard X-Ray Radiation. LAP LAMBERT Academic Publishing; 2016
  27. Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, M?der K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release 95(2):217-27
  28. McHale R, Liu Y, Ghasdian N, Hondow NS, Ye S, Lu Y, Brydson R, Wang X (2011) Dual lanthanide role in the designed synthesis of hollow metal coordination (Prussian Blue analogue) nanocages with large internal cavity and mesoporous cage. Nanoscale 3(9):3685-94
  29. Redhead, HM, Davis, SS, Illum, L (2001) Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation.?Journal of Controlled Release?70(3):353-363
  30. Ting CC, Chen SY, Liu DM (2000) Structural evolution and optical properties of TiO 2 thin films prepared by thermal oxidation of sputtered Ti films. Journal of Applied Physics Oct 88(8): 4628-33
  31. Cohen M, Chelikowsky J (2012)?Electronic structure and optical properties of semiconductors?75. Springer Science & Business Media.
  32. L?pez-Romero S, Castillo-Mendoza SJ, Ch?vez-Ram?rez J, D?az-Becerril K (2003) S?ntesis y caracterizaci?n ?ptica, el?ctrica y estructural de pel?culas delgadas de CS2 depositadas por el m?todo PECVD. Materia 8(4):341-9
  33. Oliva FY, Avalle LB, Santos E, C?mara OR (2002) Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. Journal of photochemistry and photobiology A. chemistry 146(3):175-88
  34. ZavyalovSA, Timofeev AA, Pivkina AN, Schoonman J (2004) Metal-polymer Nanocomposites: Formation and Properties Near the Percolation Threshold. In?Nanostructured Materials?Springer, Boston, MA. (97-113)
  35. Lushnikov AA, Simonov AJ (1974) Surface plasmons in small metal particles. Zeitschrift f?r Physik 270(1):17-24
  36. Mie G (1908). Beitr?ge zur Optik tr?ber Medien, speziell kolloidaler Metall?sungenAnnalen der physic 330(3):377-445
  37. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Physical Review106(5):874
  38. BarnesWL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics.?Nature?424(6950):824-830
  39. Mudunkotuwa IA, Al Minshid A, Grassian VH (2014) ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid?solid interface in environmentally and biologically relevant media. Analyst 139(5):870-81
  40. Tsung TT, Chang H, Chen LC, Han LL, Lo CH, Liu MK (2003) Development of pressure control technique of an arc-submerged nanoparticle synthesis system (ASNSS) for copper nanoparticle fabrication. Materials Transactions44 (6):1138-42
  41. Lo CH, Tsung TT, Chen LC (2005) Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS). JSME International Journal Series B Fluids and Thermal Engineering 48(4):750-5
  42. Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy15 (101):184-90
  43. Komova OV, Simakov AV, Rogov VA, Kochubei DI, Odegova GV, Kriventsov VV, Paukshtis EA, Ushakov VA, Sazonova NN, Nikoro TA (2000) Investigation of the state of copper in supported copper?titanium oxide catalysts. Journal of Molecular Catalysis A Chemical 161(1-2):191-204
  44. Markel VA, Shalaev VM, Zhang P, Huynh W, Tay L, Haslett TL, Moskovits M (1999) Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Physical Review B. 59(16):10903
  45. Kapoor S, Joshi R, Mukherjee T (2002) Influence of I anions on the formation and stabilization of copper nanoparticles. Chemical Physics Letters 354(5-6):443-8
  46. Zhao Y, Zhu JJ, Hong JM, Bian N, Chen HY (2004) Microwave‐Induced Polyol‐Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology. European Journal of Inorganic Chemistry 1 (20):4072-80
  47. Kapoor S, Joshi R, Mukherjee T (2002) Influence of I anions on the formation and stabilization of copper nanoparticles. Chemical Physics Letters 354(5-6):443-8
  48. Zhang HX, Siegert U, Liu R, Cai WB (2009) Facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale research letters4 (7):705.
  49. Curtis AC, Duff DG, Edwards PP, Jefferson DA, Johnson BF, Kirkland AI, Wallace AS (1988) Preparation and structural characterization of an unprotected copper sol. The Journal of Physical Chemistry 92(8):2270-5
  50. Mahoney W, Andres RP (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporation. Materials Science and Engineering A 204(1-2):160-4
  51. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International reviews in physical chemistry 19(3):409-53
  52. Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. The Journal of Physical Chemistry B 109(39):18218-22
  53. Salzemann C, Brioude A, Pileni MP (2006) Tuning of copper nanocrystals optical properties with their shapes. The Journal of Physical Chemistry B 110(14):7208-12
  54. Kreibig, U, Vollmer, M (1995) Theoretical considerations. In?Optical Properties of Metal Clusters?(pp. 13-201). Springer Berlin Heidelberg
  55. Yeshchenko OA, Dmitruk IM, Dmytruk AM, Alexeenko AA (2007) Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Materials Science and Engineering 137(1-3):247-54
  56. Rehman S, Mumtaz A, Hasanain SK (2011) Size effects on the magnetic and optical properties of CuO nanoparticles. Journal of Nanoparticle Research: 13(6):2497-507.
  57. Willardson, RK, Beer, AC eds. (1967)?Optical properties of III-V compounds. Academic Press
  58. Dressel M, Gr?ner G (2002). Electrodynamics of solids optical properties of electrons in matter: 1269-1270
  59. Liu Q, Liu H, Liang Y, Xu Z, Yin G (2006) Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process. Materials research bulletin 41(4):697-702
  60. Zhang X, Zhang D, Ni X, Zheng H (2008) Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper Solid-State Electronics 52(2):245-8

[Ahmed M. El-Khatib, Moustafa M. Mohamed, Mohamed S. Badawi, A. S. Doma, Amna S. Mohamed and A. A. Thabet. (2018); COPPER NANOPARTICLES OBTAINED BY ARC DISCHARGE METHOD: SYNTHESIS, CHARACTERIZATION, AND PROPERTIES. Int. J. of Adv. Res. 6 (4). 1-19] (ISSN 2320-5407). www.journalijar.com


A. S. Doma
Advanced Technology and New Materials Research Institute (ATNMRI), City for Scientific Research and Technological Applications (SRTA-CITY), Alexandria, Egypt.

DOI:


Article DOI: 10.21474/IJAR01/6819       DOI URL: http://dx.doi.org/10.21474/IJAR01/6819


Share this article