15Nov 2019

OPTIMIZATION OF PROCESS PARAMETERS FOR ENHANCED THERMOSTABLE LIPASE PRODUCTION BY BACILLUS SUBTILIS SHVSC04

  • Assistant Professor, Department of Biotechnology,Shri Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Saurashtra University Rajkot, 360005, Gujarat, India
  • Associate Professor and Head, Department of Microbiology, Shri Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Saurashtra University Rajkot, 360005, Gujarat, India
Crossref Cited-by Linking logo
  • Abstract
  • References
  • Cite This Article as
  • Corresponding Author

Thermophilic lipases are stable at higher temperatures, which enhance their demand in industrial applications. In the present study, thermostable lipase was produced from bacterial strain Bacillus subtilis SHVSC04 (MN565992) isolated from Tuva Timba hot spring, Gujarat, India. Isolate displayed maximum growth in basal medium augmented with 3% sucrose, 3% yeast extract and 2 % salt at pH 7 and 50?C in 48 h. Whereas, isolate produced maximum lipase in tributyrin agar medium with pH 7, enriched with 3% sucrose, 3% yeast extract and incubated at 50?C in 72 h. Tributyrin (2%) was found to be the best substrate for lipase production in submerged conditions. The amount of lipase was increased by 1.5 fold upon optimization of different environmental and nutritional parameters. The enzyme retained 84% activity at 60?C and 70% of activity at 70?C for 1h. The present findings advocate that hot springs in Gujarat are a substantial source of thermostable bacteria producing enzymes of industrial importance


  1. Abd Rahman, R. N. Z. R., S. Mahamad, A. B. Salleh, and M. Basri (2007): A new organic solvent tolerant protease from Bacillus pumilus 115b. J. Ind. Microbiol. Biotechnol. 34: 509-517
  2. Abol Fotouh, D. M., Bayoumi, R. A., & Hassan, M. A. (2016). Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme research, 2016
  3. Ahmed, E. H., Raghavendra, T., & Madamwar, D. (2010): A thermostable alkaline lipase from a local isolate Bacillus subtilis EH 37: characterization, partial purification, and application in organic synthesis. Applied biochemistry and biotechnology, 160(7), 2102-2113.
  4. Albert, B., Shamoo, A. E., Johnson, A., Khin-Maung-Gyi, F. A., Lewis, J., Raff, M., & Roberts, K. Molecular biology of the Cell. 2002. ISBN-10, 815332181.
  5. Bharathi, D., Rajalakshmi, G., & Komathi, S. (2018): Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal of King Saud University-Science.
  6. Bora, L., & Bora, M. (2012): Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp isolated from Hotspring of Arunachal Pradesh, India. Brazilian Journal of Microbiology, 43(1), 30-42.
  7. Cappuccino, J. G., & Sherman, N. (2005): Microbiology: a laboratory manual (p. 507). San Francisco: Pearson/Benjamin Cummings.
  8. Christopher, L. P., Zambare, V. P., Zambare, A., Kumar, H., & Malek, L. (2015): A thermo‐alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV‐5 with potential application in biodiesel production. Journal of Chemical Technology & Biotechnology, 90(11), 2007-2016.
  9. Gururaj, P., Ramalingam, S., Devi, G. N., & Gautam, P. (2016): Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. brazilian journal of microbiology, 47(3), 647-657.
  10. Kamini, N. R., Fujii, T., Kurosu, T., & Iefuji, H. (2000): Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp. S-2. Process Biochemistry, 36(4), 317-324.
  11. Krishnaveni, M. (2013): Characterization of lipase producing Staphylococcus aureus MTCC 10787 from soil sample at Salem, Tamil Nadu, India. Journal of Pharmacy Research, 6(2), 304-308.
  12. Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S. S., & Gupta, R. (2005): Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 41(1), 38-44.
  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951): Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275.
  14. Mangrola, A. V., Dudhagara, P., Koringa, P., Joshi, C. G., & Patel, R. K. (2015): Shotgun metagenomic sequencing based microbial diversity assessment of Lasundra hot spring, India. Genomics Data, 4, 73-75.
  15. Masomian, M., Rahman, R. N. Z. R. A., Salleh, A. B., & Basri, M. (2013): A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochemistry, 48(1), 169-175.
  16. Mazhar, H., Abbas, N., Ali, S., Sohail, A., Hussain, Z., & Ali, S. S. (2017): Optimized production of lipase from Bacillus subtilis PCSIRNL-39. African Journal of Biotechnology, 16(19), 1106-1115.
  17. Mistry, T. B., Shaikh, N. M., Rana, H. N., & Patel, N. D. (2016): Isolation and Screening of Cellulase Producing Thermophilic Bacteria from Compost Piles and Optimization of Cellulase Production. International Journal of Advanced Biotechnology and Research, 7(1), 64-76.
  18. PATEL N. D, DAVE S R, BRAGANZA V J,? MODI H A. (2019): SEASONAL VARIATION IN BACTERIAL DIVERSITY OF TUVA TIMBA THERMAL SPRINGS OF GUJARAT, INDIA, INTERNATIONAL RESEARCH JOURNAL OF BIOLOGICAL SCIENCE, VOLUME 8, ISSUE (2), PAGES 6-14.
  19. Patel, V., Nambiar, S., & Madamwar, D. (2014): An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochemistry, 49(10), 1673-1681.
  20. Rathi, P., Saxena, R. K., & Gupta, R. (2001): A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochemistry, 37(2), 187-192.
  21. Selvin, J., Shanmughapriya, S., Gandhimathi, R., Kiran, G. S., Ravji, T. R., Natarajaseenivasan, K., & Hema, T. A. (2009): Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Applied microbiology and biotechnology, 83(3), 435.
  22. Sethi, B. K., Nanda, P. K., & Sahoo, S. (2016): Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. brazilian journal of microbiology, 47(1), 143-149.
  23. Shaini, V. P., & Jayasree, S. (2016): Isolation and characterization of lipase producing bacteria from windrow compost. Int. J. Curr. Microbiol. App. Sci, 5(5), 926-933.
  24. Sharma, P., Sharma, N., Pathania, S., & Handa, S. (2017): Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry. Journal of Genetic Engineering and Biotechnology, 15(2), 369-377.
  25. Si, J. B., Jang, E. J., Charalampopoulos, D., & Wee, Y. J. (2018): Purification and characterization of microbial protease produced extracellularly from Bacillus subtilis FBL-1. Biotechnology and bioprocess engineering, 23(2), 176-182.
  26. Sidhu, P., Sharma, R., Soni, S. K., & Gupta, J. K. (1998): Effect of cultural conditions on extracellular alkaline lipase production by Bacillus sp. RS-12 and its characterization. Indian Journal of Microbiology, 38(1), 9-14.
  27. Sreelatha, B., Rao, V. K., Kumar, R. R., Girisham, S., & Reddy, S. M. (2017): Culture conditions for the production of thermostable lipase by Thermomyces lanuginosus. Beni-Suef University Journal of Basic and Applied Sciences, 6(1), 87-95.
  28. Tripathi, R., Singh, J., kumar Bharti, R., & Thakur, I. S. (2014): Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia, 54, 518-529.
  29. Wang, Y., Srivastava, K. C., Shen, G. J., & Wang, H. Y. (1995): Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). Journal of Fermentation and Bioengineering, 79(5), 433-438.
  30. Wu, H. S., & Tsai, M. J. (2004): Kinetics of tributyrin hydrolysis by lipase. Enzyme and microbial technology, 35(6-7), 488-493.

[Leena Ambasana and Neepa Pandhi (2019); OPTIMIZATION OF PROCESS PARAMETERS FOR ENHANCED THERMOSTABLE LIPASE PRODUCTION BY BACILLUS SUBTILIS SHVSC04 Int. J. of Adv. Res. 7 (Nov). 211-221] (ISSN 2320-5407). www.journalijar.com


Leena Ambasana
Assistant Professor, Department of Biotechnology, Shri Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Saurashtra University Rajkot, 360005, Gujarat, India

DOI:


Article DOI: 10.21474/IJAR01/9995      
DOI URL: http://dx.doi.org/10.21474/IJAR01/9995