10Feb 2020


  • Ramnarain Ruia College, Matunga L. Nappo Road, Matunga, Dadar East, Mumbai, Maharashtra 400019.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The heavy metal contamination and disposal of waste frying oil, as well as resistance, occurs due to the hydrophobic nature of antibiotics is a universal issue. The challenge is to develop a method in which biological molecules produced by the low-cost substrate used to reduce metal-associated toxicity in metal-contaminated waste. Along with that, such biological molecules can use alone or synergistically to makes the microbial cell surface more susceptible to accumulate hydrophobic substance (antibiotic) into the cell for restoring resistance. For this purpose, biosurfactant producing bacteria were isolated from a metal-contaminated soil sample and identified as Pseudomonas spp..The result showed that extracellular glycolipid produced by metal isolate was Rhamnolipid. Maximum rhamnolipid production observed when the culture was incubated for 6-8 days in medium containing different amount of mannitol and peptone. Fried oil also acts as the best carbon source giving excellent rhamnolipid production. Moreover, extracted rhamnolipid found to be antimicrobial against gram-positive, gram-negative organisms and fungi as well. It also increases its microbicidal activity of ampicillin antibiotic when used synergistically with rhamnolipid. Different concentrations (60, 80?g/ml) of rhamnolipid were evaluated and compared for the efficiency of heavy metal [Cr (VI)] removal. The result showed that superior adsorbent having 80 ?g/ml concentration of rhamnolipid reduced 46%, 39%, 32%, 19% of 10ppm, 20ppm, 60ppm, 80ppm of hexavalent chromium respectively.

  1. Abouseoud, M., Maachi, R., & Amrane, (2007). Biosurfactant Production from olive oil by Pseudomonas fluorescens. Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 340?347.
  2. Angaleswari, C., Suji, L., & Mahalingam, P. U. (2012). Potentials of Biosurfactant Producing Pseudomonas spp from automobile workshop. 3(6), 4030?4032.
  3. Ashayeri-Panah, M., Feizabadi, M. M., & Eftekhar, F. (2014). Correlation of multi-drug resistance, integron and blaESBL gene carriage with genetic fingerprints of extended-spectrum β-lactamase producing Klebsiella pneumoniae. Jundishapur Journal of Microbiology, 7(2), 1?5.
  4. Bendaha, M. E., Mebrek, S., Naimi, M., Tifrit, A., Belaouni, H. A., & Abbouni, B. (2012). Isolation and Comparison of Rhamnolipids Production in Pseudomonas aeruginosaB:2 and Pseudomonas fluorescens P.V:10, Open access scientific reports, 1(12), 1?7.
  5. Benincasa, M., Marqu?s, A., Pinazo, A., & Manresa, A. (2010). Rhamnolipid surfactants: Alternative substrates, new strategies. Advances in Experimental Medicine and Biology (Vol. 672).
  6. chromium assay.pdf. https://www.epa.gov/sites/production/files/2015-12/documents/7196a.pdf.
  7. Das, P., Yang, X. P., & Ma, L. Z. (2014). Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. In Frontiers in Microbiology (Vol. 5).
  8. Elouzi, A. A., Akasha, A. A., Elgerbi, A. M., El-Baseir, M., & El Gammudi, B. A. (2012). Removal of heavy metals contamination by bio-surfactants (Rhamnolipids). Journal of Chemical and Pharmaceutical Research, 4(9), 4337?4341.
  9. Hayder, Nadhem (2012). Inhibitory activity of Rhamnolipid produced by Pseudomonas aeruginosa NH22 against Rhizoctonia solani . Vol.6. pp. 32-44.
  10. A. L. (2014). Isolation and Antimicrobial Activity of Rhamnolipid (Biosurfactant) From Oil-Contaminated Soil Sample Using Humic-Acid Salts-Vitamin Agar. International Journal of Research in Engineering and Technology, 03(05), 357?365.
  11. Karnwal, A., & Bhardwaj, V. (2014). Bioremediation of heavy metals (Zn and Cr) using microbial biosurfactant. Journal of Environmental Research and Protection, 11(1), 29?33.
  12. Kim, D., & Om, J. (2013). Direct Spectroscopic Determination of Aqueous Phase Hexavalent Chromium. Universal Journal of Engineering Science, 1(1), 1?4.
  13. Lotfabad, T. B., Shahcheraghi, F., & Shooraj, F. (2013). Assessment of antibacterial capability of rhamnolipids produced by two indigenous Pseudomonas aeruginosa Jundishapur Journal of Microbiology, 6(1), 29?35.
  14. Mizoguchi, J., Suginaka, H., & Kotani, S. (1979). Mechanism of synergistic action of a combination of ampicillin and dicloxacillin against a β-lactamase-producing strain of Citrobacter freundii. Antimicrobial Agents and Chemotherapy, 16(4), 439?443.
  15. Mohanty, B., & Mahindrakar, A. B. (2011). Removal of Heavy Metal by Screening Followed by Soil Washing from Contaminated Soil. International Journal of Technology And Engineering System, 2(3), 290?293.
  16. Govindammal M and Parthasarathi R. (2013). Investigation on Antimicrobial Activity of Biosurfactant Produced By Pseudomonas Fluorescens Isolated From Mangrove Ecosystem. International Research Journal of Pharmacy, 4(1), 230?232.
  17. Nordin, N., Zakaria, M., Halmi, M., Ariff, A., Zawawi, R., & Wasoh, H. (2013). Isolation and screening of high efficiency biosurfactant-producing Pseudomonas spp. Journal of Biochemistry, Microbiology and Biotechnology, Vol. 1, pp. 25?31.
  18. Nott, K., Richard, G., Laurent, P., Jerome, C., Blecker, C., Wathelet, J. P.,Deleu, M. (2013). Enzymatic synthesis and surface properties of novel rhamnolipids. Process Biochemistry, 48(1), 133?143.
  19. Onbasli, D., & Aslim, B. (2008). Determination of antimicrobial activity and production of some metabolites by Pseudomonas aeruginosa B1 and B2 in sugar beet molasses. African Journal of Biotechnology, 7(24), 4614?4619.
  20. Pacwa-Plociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: Recent advances. In International Journal of Molecular Sciences (Vol. 12).
  21. Patil, S., Pendse, A., & Aruna, K. (2014). Studies on optimization of biosurfactant production by Pseudomonas aeruginosa F23 isolated from oil contaminated soil sample. International Journal of Current Biotechnology, 2(4), 20?30.
  22. Randhawa, K. K. S., & Rahman, P. K. S. M. (2014). Rhamnolipid biosurfactants-past, present, and future scenario of global market. In Frontiers in Microbiology (Vol. 5).
  23. Rahman, P. K. S. M., Pasirayi, G., Auger, V., & Ali, Z. (2010). Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor, Biotechnology, and applied biochemistry journal,55, 45?52.
  24. Reis, R. S., Pereira, A. G., Neves, B. C., & Freire, D. M. G. (2011). Gene regulation of rhamnolipid production in Pseudomonas aeruginosa - A review. Bioresource Technology, 102(11), 6377?6384.
  25. Rikalovic, M. G., Gojgic-Cvijovic, G., Vrvic, M. M., & Karadzic, I. (2012). Production and characterization of rhamnolipids from Pseudomonas aeruginosa san-ai. Journal of the Serbian Chemical Society, 77(1), 27?42.
  26. Salleh, S. M., Noh, N. A. M., Ramli, A., Yahya, M., & Yahya, R. M. (2011). Comparative study: Different recovery techniques of rhamnolipid produced by Pseudomonas aeruginosa USMAR-2. Proceedings of 2011 International, 18, 132?135.
  27. Samadi, N. et al. (2012) ?Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus?, Folia Microbiologica, 57(6), pp. 501?508.
  28. Santhini, K., & Parthasarathi, R. (2014). Isolation and Screening of Biosurfactant Producing Microorganisms from Hydrocarbon Contaminated Soils from Automobile Workshop. 5(2), 158?167.
  29. Sarachat, T., Pornsunthorntawee, O., Chavadej, S., & Rujiravanit, R. (2010). Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresource Technology, 101(1), 324?330.
  30. Saravanan, V., & Vijayakumar, S. (2015). Isolation and screening of biosurfactant producing microorganisms from oil contaminated soil. Journal of Academia and Industrial Research, 15(2), 158?167.
  31. Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, B. A. (2010). Methods for investigating biosurfactants and bioemulsifiers: A review. In Critical Reviews in Biotechnology (Vol. 30).
  32. Subasioglu, T., & Cansunar, E. (2008). Nutritional factors effecting rhamnolipid production by a nosocomial Pseudomonas aeruginosa. Hacettepe Journal of Biology and Chemistry, 36(1), 77?81.
  33. Vanavil, B., Perumalsamy, M., & Rao, A. S. (2014). Studies on the effects of bioprocess parameters and kinetics of rhamnolipid production by aeruginosa NITT 6L. Chemical and Biochemical Engineering Quarterly, 28(3), 383?390.
  34. Vijaya, B., Jayalakshmi, N. R., & Manjunath, K. (2014). Isolation and partial characterization of a biosurfactant produced by Pseudomonas aeruginosa PAVIJ from contaminated soil. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(2), 881?895.
  35. White, R. L., Burgess, D. S., Manduru, M., & Bosso, J. A. (1996). Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrobial Agents and Chemotherapy, 40(8), 1914?1918.
  36. Xiangsheng, Z. et al. (2012) ?Isolation and characterization of rhamnolipid producing Pseudomonas aeruginosa strains from waste edible oils,? African Journal of Microbiology Research, 6(7), pp. 1466?1471.
  37. Zhi, L. U. O., Xing, Y., Hua, Z., Guang, Z., Zhi, L. I. U., Ya, Z. H. U., (2013). Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch ? fed fermentation, Springer, 1015?1021.




Article DOI: 10.21474/IJAR01/10437       DOI URL: http://dx.doi.org/10.21474/IJAR01/10437

Share this article