24Feb 2017

Synthesis, characterization and oxidase biomimetic catalytic activity of copper(II) complexes with pyridine based ligand containing N3S2 donors.

  • Chemistry Department, Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh Egypt.
  • Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt.
  • Chemistry Department, University College in Al-Jamoum, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

A new series of hexa-, and five- coordinated copper(II) complexes, having the molecular formulae of [CuLX]X H2O, 1, 2, 3 (X = Cl?, Br?, NO3?) and [CuL]X2 nH2O, 4, 5 (X= AcO? and ClO4?) respectively and L is pentadentate pyridine based ligand have been synthesized. Structural characterization of these newly synthesized compounds was achieved by several physicochemical methods including elemental and thermal analysis (TGA and DTG), electrical molar conductance, magnetic moment measurements and spectral investigations such as IR, UV-Vis and ESR. The spectral and magnetic measurements in addition to the electrolytic conductance results demonstrated the octahedral and square-pyramidal stereochemistries for the hexa, and five coordinated copper(II) chelates respectively. Catechol oxidase and phenoxazinone synthase biomimetic catalytic activity of the inspected copper(II) chelates was studied and the results obtained indicated that, the catalytic reactivity is markedly depends on the structural properties of these newly synthesized copper(II) complexes.


  1. Messerschimdt, A., Karlin, K. D., Tyeklar, Z., Bioinorganic Chemistry of Copper, Chapman & Hall, New York. 1993.
  2. Ettinger, M.J., Lontie, R., Copper Proteins and Copper Enzymes. 3rd. , CRC Press, Boca Raton, 1994.
  3. Reedijk, J., Bouman, E., Bioinorganic Catalysis, Marcel Dekker, New York, 1999.
  4. Rosenzweig, A.C., Sazinsky, M. H., Curro Opin. Struct. Biol. 2006;16, 729.
  5. Battaini, G., Granata, A.,  Monzani, E.,  Gullotti, M., Casella, L.,.Advances in Inorganic Chemistry. Marcel Dekker, New York; 2006. pp.185-233.
  6. Ramadan, A. M., El-Mehasseb, I. M., Transition Met. 1998;23, 183.
  7. Li, D., Tong, Y., Huang, J., Ding, L., Zhong, Y., Zeng, D., Yan, P., J. Mol. A. 2011;345, 108.
  8. Rolff, M., Schottenheim, J., Decker, H.,Tuczek, F., Chem. Soc. Rev. 2011;40, 4077 .
  9. Hassanein, M., Abdo, M., Gerges, S., EI-Khalafy, S., Mol. A. 2008;287, 53 .
  10. Kaizer, J., Csonka, R., Speier, G., J. Mol. Catal. A. 2002;180, 91.
  11. Szigyarto, I. C., Simandi, T. M., Simandi, L. I., Korecz, L., Nagy, N., J. Mol. Catal. A. 2006;251, 270 .
  12. Shimizu, S., Suzuki, M., Tomoda, A., Arai, S., Taguchi, H., Hanawa, T., Kamiya, S., Tohoku J. Exp. Med. 2004;203, 47.
  13. Homma, M., Graham, A.F., Biochim. Acta. 1962;61, 642 .
  14. Katz, E., Weissbach, H.,1962. J. Biol. Chem. 237, 882 .
  15. Olmazu, C., Puiu, M., Babaligea, I., Raducan, A., Oancea, D., Appl. Catal. A: Genera1. 2012;74, 447-448.
  16. Simandi, T. M., Simandi, L. I., Gyor, M., Rockenbauer, A., Gomory, A., Dalton Trans. 2004;1056 .
  17. Le Roes-Hill, M., Goodwin, C., Burton, S., Trends Biotechnol. 2009;27, 248 .
  18. Than, R., Feldman, A. A., Krebs, B., Coord. Chem. Rev. 1999;182, 211.
  19. Gentschev, P., Moller, N., Krebs, B., Inorg. Chim. Acta. 2000;300, 442.
  20. Ramadan, A. M., Shaban, S. Y., Ibrahim, M. M., J. Mol. Struct. 2011;1006, 348 .
  21. Ramadan, M., Ibrahim, M. M., El-Mehasseb, I. M., J Coord Chem. 2012;65, 13, 2256.
  22. Shaban, S. Y., Ramadan, A. M., van Eldik, R., J Coord. 2012;65, 14, 20, 2415.
  23. May, Z., Simandi, L. I.,Vertes, A., J. Mol. A. 2006;266, 239 .
  24. Simandi, T. M., May, Z., Szigyarto, I. C., Simandi, L. I., Dalton Trans. 2005;365.
  25. Simandi, T. M., Simandi, L. I., May, Z., Besenyei, G., Coord. Chem. Rev. 2003;245, 85.
  26. Szigyarto, I. C., Simandi, L.I., Parkanyi, L., Korecz, L., Schlosser, G., Inorg. 2006;45, 7480.
  27. Blay, G., Fernandez, I., Pedro, G. R., Ruiz, R., Temporal-Sanchez, T., Pardo, E., Lloret, F., Munoz, M.c., J. Mol. Catal. 2006;250, 20.
  28. Majumder, A., Goswami, S., Batten, S. R., Fallah, M. S. E., Ribas, J., Mitra, S., Inorg. Acta. 2006;359, 2375.
  29. El-Taras, A. A., EL-Mehasseb, I. M., Ramadan, A. M., C. R. Chimie. 2012;15, 298 .
  30. Kaizer, J., Barath, G., Csonka, R., Speier, G., Korecz, L., Rockenbauer, A., Parkanyi, L., J. Inorg. Biochem. 2008;102, 773.
  31. Kaizer, J., Pap, J., Speier, G., Food Chem. 2005;93, 425.
  32. Horvath, T., Kaizer, J., Speier, G., J. Mol. Catal. A. 2004;215, 9.
  33. Ronconi, L., Sadler, P. J., Coord. Chem. Rev. 2007;251, 1633 .
  34. Storr, T., Thompson, K. H., Orvig, C., Chem. Soc. Rev. 2006;35, 534 .
  35. Chen, Y., Parkinson, J. A., Guo, Z. J., Brown, T., Sadler, P. J., Angew. Chem. Int. Ed. 1999;38, 2060.
  36. Melson, G. A., Coordination Chemistry of Macrocyclic Compounds, Plenum Press, New York. 1979.
  37. Holm, R. H., Solomon, E. I., Chem. 2004;104, 347.
  38. Sellmann, D., Prakash, R., Heinemann, F. W., Eur. J. Inorg. Chem. 2004;1847 .
  39. Santra, B. K.,Reddy, P. A. N., Nethaji, M., Chakravarty, A. R., J. Chem. Soc. Dalton Trans. 2001;3553 .
  40. Wilker, J. J., Lippard, S. j., J. Am. Chem. Soc. 1995;117, 8682 .
  41. Holm, R. H., Kennepohl, P., Solomon, E. I., Chem. 1996;96, 2239.
  42. Minkel, D. T., Saryan, A. l., Petering, D. H., Cancer Res. 1978;38, 124.
  43. Minkel, D. T., ChanStier, C. H., Petering, D. H., 1976. Mol. Pharmacol. 12, 1036.
  44. Xie, Y. B., Cui, G. H., Bu, X., J. Mol. Struct. 2004;705, 11.
  45. Vetrichelvan, M., Lai, Y. H., Mok, K. F., Inorg. Acta. 2004;357, 1397.
  46. Nasser S., Khalil, S. A. M., Eur. J. Med Chem., 2010;45, 5265 .
  47. Abou-Hussein, A., Linert, W., Spectrochim. Acta A. 2012;95, 596 .
  48. Chartres, J. D., Davies, M. S., Lindoy, L. F., Meehan, G. V.,Wei, G., Inorg Chem. Comm. 2006;9, 751.
  49. Kumara, B. V., Naika, H. S. B., Girija, D., Sharatha, N., Pradeepa, S. M., Hoskeri, H. G., Prabhakara, M. C., Spectrochim. Acta A. 2012;94, 192.
  50. Taylor, M. K.,Trotter, K. D., Reglinski, J., Berlouis, L. E. A., Kennedy, A. R.m, Spickett, C. M., Sowden, R. J., Inorg. Acta. 2008;361, 2851.
  51. Alcock, N. W., Kingston, R. G., Moore, P., Pierpoint, C., J Chem. Soc. Dalton Trans. 1984;1937 .
  52. Donaldson, P. B., Tasker, P. A., Alcock, n. W., J. Chem. Soc. Dalton Trans. 1976;2262; b) Chhikara, B. S., Kumar, N., Tandon, V., Mishra, A. K., Bioorg. Med. Chem. 2005;13, 4713.
  53. Chandrasekhar, S., McAuley, A., Inorg. 1992;31, 2234; b)  Atkinson, N.,  Blake, A. G., Drew, M. G. B., Forsyth, G., Gould, R. O., Lavery, A. J., Schroder, M., J. Chem. Soc. Dalton Trans. 1992;2993; c) Brand, K., Sheldrick, W. S., J. Chem. Soc. Dalton Trans. 1996;1237; d) Landgrafe, C., Sheldrick, W. S., J. Chem. Soc. Dalton Trans. 1996;989; e) Grant, G. J., Rogers, K. E., Setzer, W. N., Van Derveer, D. G., Inorg. Chim. Acta. 1995;234, 35.
  54. Geary, W.J., Coord. Chem. Rev. 1971;7, 81.
  55. Coats, A. W., Redfern, J. P., Nature. 1964;201, 68.
  56. Radecka-Paryzek, W., Patroniak-Krzyminiewska, V., Litkowska, H., Polyhedron. 1998;17, 1477.
  57. Temel, H., Cakir, U., Ugras, I. H., Synt. React. Inorg. Met. Org. Chem. 2004;34, 4, 819.
  58. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York, 1986.
  59. Rosenthal, M. R., J. Chem. 1973;50, 331; b) Vidali, M., Vigato, P. A., Casellato, U., Tondello, E., Traverso, O., J. Inorg.Nucl. Chem. 1975;37, 1715.
  60. Bingham, A. G., Bogge, H., Muller, H., Ainscough, A., Brodie, A. M., J. Chem. Soc. Dalton Trans. 1987;493.
  61. Lever, A. B. P., Inorganic Electronic Spectroscopy. Elsevier, Amsterdam, 1970.
  62. Firdaus, F., Fatma, K., Azam, M., Khan, S., Khan, A., Shakir, M., Spectrochem. Acta A. 2009;72, 591.
  63. Khan, S. A. A., Siddigi, K. S., Spectrochim. Acta A. 2007;68, 269.
  64. Figgis, B. N., Lewis, J., Prog. Chem. 1964;6, 37; b) Dutta, R. L., Syamal, A., Elements of Magnetochemistry, 2nd ed., Affiliated East-West Press, Delhi. 2007.
  65. Pilbrow, R., Transition Ion Electron Paramagnetic Resonance, Oxford Science Publication, Oxford. 1990; Chandra, S., Gupta, L. K., Jain, D., Spectrochim. Acta A. 2004;60, 2411.
  66. Kneubuhl, F. K., J. Chem. 1960;33, 1074; b) Chandra, S., Gupta, L. K., Spectrochim. Acta A. 2005;62, 307; c) Chandra, S., Gupta, L. K., 2005. Spectrochim. Acta A. 61, 1181; d) Chandra, S., Gupta, L. K., Spectrochim. Acta A. 2004;60, 3079.
  67. Sacconi, L., Carlin R. L., Transition Metal Chemistry. Marcel Dekker, New York, 1978.; b) Chandra, S., Gupta, L. K., Spectrochim. Acta A. 2005;61, 2139 .
  68. Barbucci, R., Bencini, A., Gatteschi, D., Inorg. 1977;16, 2117; Chandra, S., Gupta, L. K., Spectrochim. Acta A. 2005;61, 2549.
  69. Narang, K. K., Singh, V. P., Trans. Met. Chem. 1993;18, 287.
  70. Bose, M., Ohta, K., Babu, Y., Sastry, M. D., Chem. Lett. 2000;324, 330; b) Ray, R. K., Kauffman, G. B., Inorg. Chim. Acta. 1990;173, 207; c) Hathaway, B. J., Billing, D. E., Coord. Chem. Rev. 1970;5, 143.
  71. Brown, E. R., Large, R. F., Techniques of Chemistry: Physical Methods of Chemistry (Eds.: A. Weissberger, B. Rossiter). 1971;1, 475.
  72. Karlin, K. D., Dahlstrom, P. L., Hyde, I. R., Zubieta, I., J Chem. Soc. Commun. 1980;906.
  73. Makino, N., McMahill, P., Mason, H. S., J. Biol. Chem. 1974;249, 6062.
  74. Reim, J., Krebs, B., J. Chem. Soc. Dalton Trans. 1997;3793.
  75. Gentschev, P., Moller, M., Krebs, B., Inorg. Chim. Acta. 2000;300, 442; b) Smith, S. J., Noble, C. J., Palmer, R. C., Hanson, G. R., Schenk, G., Gahan, L. R.,  Riley, M. J., J. Biol. Inorg. Chem. 2008;13, 499.
  76. Monzani, E., Quinti, L., Perotti, A., Casella, L., Gulloti, M., Randaccio, L., Geremia, S., Nardin, G., Faleschini,P., Tabbi, G., Inorg. Chem. 1998;37, 553.
  77. Wegner, R., Gottschaldt, M., Goris, H., Jager, E. G., Klemm, D., Chem. Eur. J. 7, 2001;2143.
  78. Rogic, J. M. M., Swerdloff, M. D., Demmin, T. R., Karlin, K. D., Zubieta, J., Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, Adenine Guilderland. pp. 167.
  79. Cox, D., Que, L., J. Am. Chem. Soc. 1988;110, 8085.
  80. Tyson, X. C. A., Martell, A. E., J. Am. Chem. Soc. 1972;94, 939; b) Waite, J. H., Anal. Biochem. 1976;75, 211.
  81. [81] Kaizer, K., Barath, G., Csonka, R., Speier, G., Korecz, L., Rockenbauer, A.,.Parkanyi, L., J. Inorg Biochem. 2008.102, 773.
  82. Hollstein, U., Chem. 1974;74, 625.
  83. Malachowski, M. R., Davidson, M. G., Hoffman, J. N., Inorg. Acta. 1989.157, 91; b) Malachowski, M. R., Davidson, M. G., Inorg. Chim. Acta. 1989.162, 199 ); c) Malachowski, M. R., Huynh, H. B., Tomlinson, L. J., Kelly, R. S., Furbeejun, J. W., J. Chem. Soc. Dalton Trans. 1995;31.
  84. Malachowski, M. R., Dorsey, B. T., Parker, M. J., Adams, M. E., Kelly, R. S., Polyhedron. 1998;17, 8, 1289; b) Malachowski, M. R., Dorsey, B., Sackett, J. B., Kelly, R. S., Ferko, A. L., Hardin, R. N., Inorg. Chim. 1996;249, 85; c) Malachowski, M. R., Tomlinson, L. J., Davidson, M. G., Hall, M. J., J. Coord. Chem. 1992;25, 171.

[Abd El Motaleb M. Ramadan, Asmaa A. Ibrahim, Magda A. Barsy, Asmaa A. Mostafa and Sami A. Al-Harbi. (2017); Synthesis, characterization and oxidase biomimetic catalytic activity of copper(II) complexes with pyridine based ligand containing N3S2 donors. Int. J. of Adv. Res. 5 (Feb). 1197-1210] (ISSN 2320-5407). www.journalijar.com


Abd El Motaleb M. Ramadan1
Chemistry Department, Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh Egypt

DOI:


Article DOI: 10.21474/IJAR01/3272      
DOI URL: https://dx.doi.org/10.21474/IJAR01/3272