CARBON NANOTUBES: SYNTHESIS, PROPERTIES AND TECHNOLOGICAL APLLICATIONS.
- Department of Physics, Faculty of Natural and Computational Sciences, Assosa, University, P.o.box 18, Assosa, Ethiopia.
- Department of Physics, Collage of Natural and Computational Sciences, Dire Dawa University.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
This project reviews synthesis, properties and technological applications of carbon nanotubes. The different synthesis methods of carbon nanotubes are illustrated briefly. The energy dependence of density of states was used to determine the optical properties of CNT. Finally, brief description of optical and electronic properties was presented. Using MATLAB Code the theoretical simulation of electronic band structure as a function of wave vector, the band gap as a function of tube diameter and the density of state as a function of energy band are generated.
- Arepalli, S., Nikolaev, P., Gorelik, O., Hadjiev, V., Holmes, W., Files, B., and Yowell L., 2004. Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/off ratios. Carbon p.1783.
- Bachilo, S.M., Strano, M.S., Kittrel, C., Hauge, R.H., Smalley, R.E. and Weisman, R.B., 2002. Structure-assigned optical spectra of single-walled carbon nanotubes. Science pp. 2361–2366.
- Belin, T. and Epron, F., 2005. Characterization methods of carbon nanotube. Materials Science and Engineering B 119. pp.105–118.
- Cantalini, C., Valentini, L., Lozzi, L., Armentano, I., Kenny, J.M. and Santucci, S., 2003. NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Actuators B 93. pp. 333–337.
- Chang, H., Lee, J.D., Lee, S.M. and Lee, Y.H., 2001. Adsorption of NH3 and NO2 molecules on carbon nanotubes. Phys. Lett. 79, pp.3863–3865.
- Charlier, A., McRae, E., Heyd, R. and Charlier, M.F., 2001. Metal semi-conductor transitions under uniaxial stress for single and double-walled carbon nanotubes. Phys. Chem. Solids 62, pp.439–444.
- Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C. and Hern´andez, E., 2004. Electronic, thermal and mechanical properties of carbon nanotubes.
- Fakhrabadi, M.M., Allahverdizadeh, A., Norouzifard, V. and Dadashzadeh, B., 2012. Mechanical characterization of deformed carbonnanotubes. Digest Journal of Nanomaterials and Biostructures 7, No. 2, pp.717 – 727.
- Fantini, C., Jorio, A., Souza, M., Strano, M.S., Dresselhaus, M.S. and Pimenta, M.A., Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy, Environment and Temperature Effects. Physical Review Letters93, No. 14, p 147406.
- Fathi, D., 2009. Novel approach for stability analysis in carbon nanotubes interconnects. Journal and Magazine 30, pp.473-477.
- Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L. and Li, C.M., 2010. Layered Graphene/Quantum Dots for Photovoltaic Devices. Vol. 122, Issue 17, pp.3078 – 3081.
- Guo, T., Nikolaev, P., Thess, A., Colbert, D.T. and Smalley, R.E., 1995. Large-scale production of single walled carbon nanotubes by the electric-arc technique. Phys Lett. 243, pp. 49–54.
- Gupta, N., Alapatt, G.F., Podila, R., Singh, R., and Poole, K.F., 2009. Prospects of Nanostructure Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules. International Journal of Photoenergy, Article ID 154059, p.13.
- Hanna, M.C., Ellingson, R.J., Beard, M., Yu, P., Micic, O.I. and Nozik, A.J., 2004. Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation Conference Paper Presented at the DOE Solar Energy Technologies.
- Hasan, T., Sun, Z. and Ferrari, A.C., 2009. Nanotube–polymer composites for ultrafast photonics. Advance Materials, Vol. 21, No. 38-39, pp. 3874-3899.
- Heo, J., 2008. Probing electronic properties of carbon nanotubes .Thesis In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy. California institute of technology, Pasadena, California
- http://en.wikipedia.org/wiki/ Carbonnanotube. Accessed on December 28, 2012.
- http://en.wikipedia.org/wiki/Chemical vapor Accessed on December 26, 2012.
- http://students.chem.tue.nl/ifp03/synthesis.html.Accessed on December 26, 2012.
- Iakoubovskii, K., Nobutsugu, , Yeji,K., Kanae, M., Said, K. and Balakrishnan, N., 2006. Midgap Luminescence Centers in Single-Wall Carbon Nanotubes Created by Ultraviolet Illumination. Applied Physics Lett. 89 No.17, p. 173108.
- Isaacs, J.A., Tanwani, A., Healy, M.L. and Dahlben, L.J., 2010. Economic assessment of single-walled carbon nanotube processes. Nanopart Res, 12, pp.551-562.
- Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo,J., Mcientyre, P., McEuen, P., Lundstrom, M. and Dai, H., 2002. High k-dielectric for advanced carbon nanotube transistors and logic gates. Nature Materials, 1, pp.241-246.
- Jin Kim S., Won, J.K., Yudhisthira, S., Alexander, N.C. and Paras, N.P., 2008. Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Phys. Lett. 92, 031107.
- Kataura, H., Kumazawa, Y., Maniwa,Y. and Umezu, I., Optical Properties of Single-Wall Carbon Nanotubes. Synthetic Metals.vol. 103, pp.2555-2558.
- Kong, J., Franklin,N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K. and Dai H., 2000. Nanotube molecular wire as chemical sensors. vol. 287, pp.622–625.
- Kongkanand, R., Domínguez, R.M. and Kama, P.V., 2007. Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells: Capture and Transport of Photogenerated Electrons. Nano Lett. 7, No. 3, pp.676–680.
- Kymakis, E., Alexandrou, I. and Amaratunga, A.J., 2003. High open circuit voltage photovoltaic devices from carbon nanotube polymer composites. Progress in Photovoltaics:Research and Applications. 93, No. 3, pp.1764–1768.
- Lee, J.U., 2005. Photovoltaic effect in ideal carbon nanotube diodes. Phys.Lett. 87, 073101.
- Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. and Meyyappan, M., 2003. Carbon nanotubes sensors for gas and organic vapor detection, Nano Lett.3, pp. 929–933.
- Lidorikis, E. and Ferrari A. C., 2009. Photonics with multiwall carbon nanotube arrays. ACS NanoLett.3, pp.1238–1248.
- Loh, K.P., Bao, Q.L., Eda, G. and Chhowalla, M., 2010. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, Vol. 2, No. 12, pp. 1015-1024.
- Maruyama, B. and Alam, K., 2002. Carbon nanotubes and nanofibers in composite materials. Sampe Journal.38, pp.59–70.
- Miyauchi,Y., Oba, M. and Maruyama, S., 2006. Cross-Polarized Optical Absorption of Single-Walled Nanotubes Probed by Polarized Photoluminescence Excitation Spectroscopy. Physical Review B74, No.20, p.205440.
- Prasada, S.,Singh, M., Shinjini S. and Gambhir, I.S., 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures. 3, No.3, pp. 115 – 122.
- Puech, P., Hubel, H., Dunstan, D., Bacsa, R. R., Laurent, C. and Bacsa, W.S., 2004. Discontinuous tangential stress in double wall carbon nanotubes. Rev. Lett. 93, 095506.
- Ruan, X., Hua, B. and Timothy S. F., 2010. Optical properties of ordered vertical arrays of multi walled carbon nanotubes from FDTD simulations. School of Mechanical Engineering, Birck Nanotechnology Center, and Energy Center Purdue University.
- Saito, R., Dresselhaus, G. and Dresselhaus, M.S., Triogonal Warping Effect of Carbon Nanotubes. Phys. Rev. B 61, pp.2981-2990.
- Singh, R., Gupta, N. and Poole, K.F., 2008. Global energy conversion revolution in the 21st century through solid state devices in Proceedings of the 26th International Conference on Microelectronics (ICM 08). vol. 1, pp. 45–54.
- Stubbs1, S.K., Hardman, S. J.O., Graham, D.M., Spencer, B.F., Flavell, W.R., Glarvey, P., Masala. O., Pickett, N.L. and Binks, D.J., 2010. Efficient carrier multiplication in nanoparticles. Rev. B 81, 081303.
- Tripathi, S.M.,Tiwari, S.B. and Shantkriti, S., 2010. Synthesis and Study of Applications of Metal coated Carbon Nanotubes. International Journal of Control and Automation, 3, No. 2, p. 53.
- Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., Dickey, E.C. and Grimes, C.A., 2001. Gas sensing characteristics of multi-wall carbon nanotubes. Actuators, B 81, pp.32–41.
- Zhang, L. Z., Sun, W. and Cheng, P., 2003. Spectroscopic and Theoretical Studies of Quantum and Electronic Confinement Effects in Nanostructured Materials. MoleculesISSN 1420-3049; pp.207-222.
[Demewez Amtate and Girma Goro (2017); CARBON NANOTUBES: SYNTHESIS, PROPERTIES AND TECHNOLOGICAL APLLICATIONS. Int. J. of Adv. Res. 5 (Mar). 1549-1565] (ISSN 2320-5407). www.journalijar.com
ethioipia