27May 2017

INHIBITION OF ISPD ENZYME TO CONTROL THE GROWTH OF MYCOBACTERIUM TUBERCULOSIS.

  • Post Graduate Centre & Department of Botany and Biotechnology, College of Commerce, Arts & Science, Patna (Bihar), India 800 020.
  • Intermediate Reference Laboratory, TBDC Campus, Agamkuan, Patna, Bihar 800 007.
  • Ashayan, D.P.R. Colony, Ramjaipal Road, Off West Bailey Road, P.O. Danapur (Bihar) Patna 801503.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Like several other pathogens, Mycobacterium tuberculosis synthesizes isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. IspD (2C-methyl-D-erythritol-4-phosphate Cytidyltransferase) is a flexible enzyme that carries out the third step in MEP pathway where 2-C-methyl-D-erythritol 4 phosphate (MEP) condenses with Cytidine Triphosphate (CTP) to form 4-diphosphocytidyl-2-amethyl-D-erythritol (CDP-ME). It catalizes the transfer of a cytidyl group from CTP to methylerythritol phosphate and utilizes two substrates, MEP and CTP. Due to this feature, this stage of MEP pathway is a significant reaction step that can be targeted to control the spread of the organism in vivo. Rosuvastatin successfully docks as a ligand close to the active site of the IspD with involvement of low (negative) energy indicating a stable system and a likely binding interaction. It can, thus, be safely assumed that rosuvastatin molecule could possibly be used as a candidate to competitively inhibit IspD to bind to CTP blocking the MEP pathway and keep the proliferating Mycobacterium tuberculosis under control.


  1. Bj?rkelid, C., Bergfors, T., Henriksson, L.M., Stern, A.L., Unge, T., Mowbray, S.L. and Jones, T.A. 2011 Structural and functional studies of mycobacterial IspD enzymes. Acta Crystallogr D Biol Crystallogr. 67(5):40314. DOI: 10.1107/S0907444911006160.
  2. Brown, A.C., Eberl, M., Crick, D.C., Jomaa, H. and Parish, T. 2010 The Nonmevalonate Pathway of Isoprenoid Biosynthesis in Mycobacterium tuberculosis Is Essential and Transcriptionally Regulated by Dxs. Journal of Bacteriology 192(9):2424?2433. DOI:10.1128/JB.01402-09
  3. Grosdidier, A.,?Zoete, V. and?Michielin, O. 2011 SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res.39(Web Server issue):W270-7.? DOI: 10.1093/nar/gkr366.
  4. Hunter, W.N. 2007 The Non-mevalonate Pathway of Isoprenoid Precursor Biosynthesis. The Journal of Biological Chemistry 282:21573-21577. DOIi: 10.1074/jbc.R700005200
  5. Imlay, L.S., ?Armstrong, C.M.,?Masters, M.C., ?Li, T., ?Price. K.E., ?Edwards, R.L., Mann, K.M., ?Li, L.X., Stallings, C.L., Berry, N.G., O?Neill, P.M.?and?Audrey R. Odom, A.R. 2015 Plasmodium?IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. ACS Infect Dis.; 1(4): 157?167. DOI:??1021/id500047s.
  6. Obiol-Pardo, C., Cordero, A., RubioMartinez, J. and Imperial, S. (2010) Homology modeling of Mycobacterium tuberculosis 2CmethylDerythritol4phosphate cytidylyltransferase, the third enzyme in the MEP pathway for isoprenoid biosynthesis. J Mol Model. 16(6):106173. DOI: 10.1007/s008940090615x.
  7. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E.2004 UCSF Chimera--a visualization system for exploratory research and analysis. .J Comput Chem.?25(13):1605-12.
  8. Price, K.E., Armstrong, C.M., Imlay, L.S., Hodge, D.M., Pidathala, C., Roberts, N.J., Park, J., Makati, M., Raman Sharma, R., Alexandre S. Lawrenson, A.S., Tolia, N.H., Berry, N.G., Paul M. O?Neill, P.M. and John, A.R.O. 2016 Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the?Plasmodium? MEP Pathway enzyme, IspD. Scientific Reports?6, Article?number:?36777. DOI:10.1038/srep36777.
  9. Reddy, M.C.M, Bruning, J.B., Thurman, C, Ioerger, T.R. and Sacchettini, J.C. 2011 Crystal structure of Mycobacterium tuberculosis 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (IspD): a candidate antitubercular drug target. www.rcsb.org, Proteins. DOI: 102210/pdb2q7u/pdb.
  10. Smith, I. 2003 Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews 16(3):463?496. DOI: 10.1128/CMR.16.3.463?496.
  11. Varikoti, R.A.,? Gangwal, R.P., Dhoke, G.V., Venkata Krishnan, R. and Abhay T. Sangamwar, A.T. 2012 ?Structure based de novo design of IspD inhibitors as anti-tubercular agents. Available from Nature Precedings http://dx.doi.org/10.1038/npre.2012.7088.1
  1. Wanke, M., Skorupinska-Tudek, K. and Swiezewska, E. 2001 Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochim Pol. 48(3):66372

[Manoj Kumar, Pratik Kumar, Pratima Kumari and Jainendra Kumar. (2017); INHIBITION OF ISPD ENZYME TO CONTROL THE GROWTH OF MYCOBACTERIUM TUBERCULOSIS. Int. J. of Adv. Res. 5 (May). 1309-1313] (ISSN 2320-5407). www.journalijar.com


Jainendra Kumar
College of Commerce, Arts & Science, Patna, Bihar, India 800 020.

DOI:


Article DOI: 10.21474/IJAR01/4249      
DOI URL: https://dx.doi.org/10.21474/IJAR01/4249