18Jun 2017

EFFECT OF FLOODING ON STOMATAL DENSITY AND STOMATAL LENGTH IN SIX SUGARCANE GENOTYPES.

  • Centro de Estudios de Biotecnolog?a Vegetal. Facultad de Ciencias Agr?colas. Universidad de Granma. Carretera a Manzanillo, km 17. Bayamo CP 85 100. Granma. Cuba.
  • Laboratorio de Fisiolog?a Vegetal. Facultad de Biolog?a. Universidad de la Habana. Cuba.
  • Centro de Estudios de Biotecnolog?a Vegetal. Facultad de Ciencias Agr?colas. Universidad de Granma. Carretera a Manzanillo, km 17. Bayamo CP 85 100. Granma. Cuba.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

When abundant precipitations are associated to physical edaphic problems then excesses of water may appear in soils of agricultural interest, affecting dissimilarly to the morfophysiology of the crop plants. The experiment was a split plot design at random in complete blocks with five repetitions in a Typic Hapluster soil. The presence or absence of the soil flooding was considered like plots and the genotypes like sub-plots. Stomatal density and stomatal length were measured in 10-mo old sugar cane plants in two crop cycles, plant cane and first ratoon. The stress intensity was determined. It was proven that the stress intensity inverted increased the stomatal density at a 9.0 % in plant cane and first ratoon, while the stomatal length in excess of water in soil was reduced at 12.0 % for both crop cycles, with important differences among the studied genotypes. Inverse correlations were detected between stomatal density and stomatal length. It concluded that the oxygen deficiency in flooding soil induces morphologic changes in the stomatal density and length with wide differentiation among genotypes in plant cane and first ratoon crops cycles.


  1. Aasamaa, K., Sober A., Rahi M. (2001). Leaf stomatical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water? status in temperature deciduous trees. Aust J Plant Physiol 28,765-774.
  2. Adams, K. (2007). Evolution of duplicate gene expression in polyploid and hybrid plants. Journal of Heredity 61, 1125-1132.
  3. Armstrong, W., R?ndle R.B., Jackson B. (1994). Mechanisms of flood tolerance in plants. Acta Bot?nica Neerlandica 43,51-58.
  4. Barrilleaux, T.C., Grace J.B. (2000). Growth and invasive potential of Sapium sebiferum (Europhorbiaceae) within the coastal prairie region: the effects of soil and regime. Am J Bot 87, 1099-1106.
  5. Bernal, N., Morales F., G?lvez G., Jorge I. (1997). Variedades de ca?a de az?car. Uso y manejo. Instituto Nacional de Investigaciones de la Ca?a de Az?car. IMAGO. La Habana. Cuba. 99 pp. [In Spanish].
  6. Buckley, N. (2005). The control of stoma by water balance. New Phytology 168, 275-292.
  7. Campa, V., Z. (1986). Par?metros epid?rmicos y resistencia a la sequ?a en ca?a de az?car. Diploma?s thesis. Laboratorio de Fisiolog?a Vegetal. Facultad de Biolog?a. Universidad de la Habana. 15pp. [In Spanish].
  8. Centrito, M., Maonani F., Lee H.S.J., Jarvis P.G. (1999). Interactive effects of elevated CO2 and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations. New Phytologist 141, 141-153.
  9. Ch?ves, M.M., (1991). Effects of water deficits on carbon assimilation. J Exp Bot 42, 1-16.
  10. Cornide, M.T., G?lvez G. (1999). Los marcadores moleculares y el programa de mejoramiento de la ca?a de az?car. In: Biodiversidad (Arencibia A., Cornide M., ed). Ed Elfos Scientiae, La Habana, pp. 45-62. [In Spanish].
  11. Cornide, M.T. (2001). La gen?tica vegetal, el mejoramiento y la sociedad. Cultivos Tropicales 22, 73-82.
  12. Crawford, R.M., Braendle R. (1996). Oxygen deprivation stress in a changing environment. J Exp Bot 295, 145-159.
  13. Croxdale, J.L. (2000). Stomatal patterning in angiosperms. Am J Bot 87, 1069-1080.
  14. Dat, J.F., Capelli N., Folger H., Bourgeade P., Badot P.M. (2004). Sensing and signaling during plant flooding. Plant Physiol Biochem 42, 273-282.
  15. De Carvalho C.J.R., Ishida F.Y. (2002). Responses of young pijuayo plants (Bactris gasipaes Kunth) to flooding. Pesqu Agropec Bras 37, 1231-1237.
  16. De Kroon H., Huber H., Stuefer J., Van Groenendael J. (2005). A modular concept of phenotypic plasticity in plants. New Phytologist 166, 73?82.
  17. Dell?amico J., Torrecillas A., Rodriguez P., Morales D., S?nches?Blanco M.J. (2001). Differences in the effects of flooding the soil early and late in the photoperiod on the water relations of pot-grown tomato plants. Plant Sci 3, 481-487.
  18. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonz?lez, L., Tablada, M., Robledo, C.W. InfoStat. (2013), Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de C?rdoba, Argentina. URL http://www.infostat.com.
  19. Edwards D., Kerps H., Hass H. (1998). Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49, 255-278.
  20. Franks P.J, Cowan IR, Farquhar GD. (1998). A study of stomatal mechanics using the cell pressure probe. Plant, Cell and Envir. 21, 94?100.
  21. Fisher R.A., Maurer R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agr Res 29, 897-917.
  22. Fonseca I. (2006). Efecto ecofisiol?gico del tipo de cobertor sobre algunos indicadores anat?micos fisiol?gicos y su relaci?n con la agroproductividad en plantaciones de tabaco (Nicotiana tabacum L). Master?s thesis. Universidad de Granma ? I. I. Jorge Dimitrov. 72 pp. [In Spanish].
  23. Galen C. (2000). High and dry: drought stress, sex ? allocation trade ? offs, and selection on flower size in the alpine wildflower Polemonium viscosum (Polemoniaceae). American Naturalist 156, 72-83.
  24. Glaz B., Morris D.R., Daroub S.H. (2004). Sugarcane photosynthesis, transpiration, and stomatal conductance due to flooding and water table. Crop Sci 44, 1633-1641.
  25. Glover B.J. (2000). Differentiation in plant epidermal cells. J Exp Bot 51, 497-505.
  26. Gomes De Moraes M., Donizeti J.A., Mota De Oliveira L.E., Vitorino P.F., Murad M.M. (2001). Caractericāo do crescimento e da atividae das desidrogenases alcoh?lica e ?tica em seis esp?cies herb?ceas sob condicōes de hipoxia. Ciencia Agrotecnica 25, 86-95. [In Portughese].
  27. Gower J.C. and Ross P.G.N. (1969). Minimun spanning tress and single cluster analysis. Applied Statistics 18, 54-64.
  28. Grantz D.R., Assmann H. (1991). Physiological aspects about the stomatal conductance. Plant Physiol 3, 123-130.
  29. Heckenberger U., Roggatz U., Schurr U. (1998). Effect of drought stress on the cytological status in Ricinus communis. J Exp Bot 49, 181-189.
  30. Hetherington A.M., Woodward F.I. (2003). The role of stomata in sensing and driving environmental change. Nature 424, 901-908.
  31. Howard R., Rafferty P. (2006). Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA. Environ and Experim Bot 56, 301-313.
  32. Humbert R.P. (1965). El cultivo de la ca?a de az?car. Universitaria eds. La Habana. Cuba. 785 pp. [In Spanish].
  33. (1987). Normas y procedimientos del mejoramiento gen?tico de la ca?a de az?car en Cuba. Instituto Nacional de Investigaciones de la Ca?a de Az?car, La Habana, Cuba. 147 pp. [In Spanish].
  34. (2002). Normas y procedimientos del programa de mejoramiento gen?tico de la ca?a de az?car en Cuba. Instituto Nacional de Investigaciones de la Ca?a de Az?car. Bolet?n No. 1 Cuba & Ca?a-INICA, La Habana, Cuba. 315 pp. [In Spanish].
  35. Inman-Bamber N.G., Smith D.M. (2005). Water relations in sugarcane and response to water deficits. Field Crop Res 92, 185-202.
  36. Jackson M.B., Colmer T.D. (2005). Response and adaptation by plants to flooding stress. Ann Bot 96, 501-505.
  37. Jackson M.B., Saker L.R., Crisp C.M., Else M.A., Janowiak F. (2003). Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant Soil 253, 103-113.
  38. Jorge H., Morales F., Jorge I,, Garc?a H. (2004). Cat?logo de nuevas variedades de ca?a de az?car. PUBLINICA eds, 1st La Habana. Cuba. 105 pp. [In Spanish].
  39. Kouwenberg L., K?rschner W.M., Visscher H. (2004). Changes in stomatal frecuency and size during elongation of Tsuga heterophylla Ann Bot 94, 561-569.
  40. Kouwenberg L., Mcelwain J.C., K?rschner W.M., Wagner F., Beerling D.J., Mayle F.E., Visscher H. (2003). Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. Am J Bot 90, 610-619.
  41. Kozlowski T.T. (1997). Responses of woody plants to flooding and salinity. Tree Physiology Monograph 1: 1-29.
  42. Kuijper J. (1915). De groie van bladschijf, bladscheede en stengen van het suikerriet. Archief Suikerind. Ned Indi? 23, 528-556. [In Dutch]?
  43. Lande, R. and Arnold, S.J. (1983) The measurement of selection on correlated characters. Evolution, 37, 1210-1226.
  44. Lake J.A., Woodward F.I., Quick W.P. (2002). Long distance CO2 signalling in plants. J Exp Bot 53, 183-193.
  45. Magalh?es P.C., Dur?es F.O.M., Vitorino F.P.G., Donozeti J.A., Gama E.E.G. (2000). Adaptaci?n del ma?z a condiciones de estr?s por encharcamiento. Corporaci?n Colombiana de Investigaci?n Agropecuaria (CORPOICA). Ecorregi?n Caribe. Febrero. s/p. [In Spanish].
  46. Magalh?es P.C., Dur?es F.O.M., Andrade C.; DE Oliveira A.C., Souza I.R., Gama E.E.G. (2001). Adapta??o do milho a diferentes condi??es de encharcamento. VII Congresso Brasileiro de Fisiologia Vegetal, Ilh?us, B. A. Anais, p. 8. [In Portughese].
  47. Maltby E. (1991). Wetlands their status and role in the In: Plant life under oxygen deprivation. ecology, physiology and biochemistry (Jackson M.B., ed). Ed SPB Academic Davies DD, Lambers H, The Hague. pp. 3-21.
  48. Medlyn B.E. (2001). Stomatal conductance of forest species after long-term exposure to elevated C02 concentration: a synthesis. New Phytologist 149, 247-264.
  49. Ortega E., R?des R. (1990). T?cnica de medici?n de la apertura de los estomas. Folleto de Pr?cticas de Fisiolog?a Vegetal. Pueblo y Educaci?n eds. La Habana. Cuba. 193 pp. [In Spanish].
  50. Puijalon S., Bornette G. (2006). Phenotypic plasticity and mechanical stress: biomass partitioning and clonal growth of an aquatic plant species. Am J Bot 93, 1090 - 1099.
  51. Pyakurel, A. and Wang, J.R. (2014) Leaf morphological and stomatal variations in paper birch populations along environmental gradients in Canada. American Journal of Plant Sciences, 5, 1508-1520.
  52. Raven J. (2002). Selection pressures of stomatal evolution. New Phytologist 153, 371-386.
  53. Rice W.R. (1989). Analysing tables of statistical test. Evolution 43, 223-225.
  54. Roth-Nebelsick A. (2007). Computer-based studies of diffusion through stomata of different architecture. Ann Bot 100, 23-32.
  55. Royer D.L. (2001). Stomatal density and stomatal index as indicators of paleoatmospheric CO2 Rev Palaeobot Palynol 114, 1-28.
  56. Rubin BA. (1984). Curso de fisiolog?a vegetal. Vneshtorgizdat eds., Moscow. Russia. 274 pp. [In Spanish].
  57. Schroeder J.I., Kwak J.M., Allen G.J. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327-330.
  58. Schmalhausen I.I. (1949). Factors of evolution. The theory of stabilizing selection. Chicago: University of Chicago Press. 135 pp.
  59. SOIL SURVEY STAFF (2003). Claves para la taxonom?a de suelos. Colegio de Postgraduados, Chapingo, M?xico. 306 pp. [In Spanish].
  60. Tadeo F.R. (2000). Fisiolog?a de las plantas y el estr?s. In: Fundamentos de Fisiolog?a Vegetal. (Azc?n-Bieto J., Tal?n M., eds). Ed McGraw-Hill/-Interamericana de Espa?a, Madrid, Spain. pp. 481-498. [In Spanish].
  61. Tich? I. (1991). Photosynthetic characteristics during ontogenesis of leaves 7. Stomata density and size. Photosynthetica 16, 375-471.
  62. Van Dillewijn C. (1951). Bot?nica de la ca?a de az?car. Revolucionaria eds.. 2nd. ed. Instituto Cubano del Libro. La Habana. Cuba. 460 pp. [In Spanish].
  63. Vartapetian B.B., Jackson M.B. (1997). Plant adaptation to anaerobic stress. Ann Bot 79 (Supplement A), 3-20.
  64. Wade, M.J. and Kalisz, S.J. (1990) The causes of natural selection. Evolution, 44, 1947-1955.
  65. Wagner F., Dilcher D.,Visscher H. (2005). Stomatal frequency responses in hard-swanp vegetation from Florida during a 60 year continuous CO2 Am J Bot 92, 690-695.
  66. Wolfe L., Mazer S. (2005). Responses to environmental heterogeneity: fitness consequences of phenotypic stability vs. sensitivity in wild radish (Raphanus sativus: Brassicaceae). Int J Plant Sci 166, 631?640.
  67. Zarinkamar F. ( 2007). Stomata observations in dicotyledons. Pakistan J Biol Sci 10, 199-219.
  68. Zhang J., Van Toai T., Huynh L., Preiszner J. (2000). Development of flooding ? tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mol Breed 6, 135-144.

[Sergio Rodr?guez Rodr?guez, Eduardo Ortega and Juan Jose Silva Pupo. (2017); EFFECT OF FLOODING ON STOMATAL DENSITY AND STOMATAL LENGTH IN SIX SUGARCANE GENOTYPES. Int. J. of Adv. Res. 5 (Jun). 709-718] (ISSN 2320-5407). www.journalijar.com


Sergio F. Rodríguez Rodríguez
Centro de Estudios de Biotecnología Vegetal. Facultad de Ciencias Agrícolas. Universidad de Granma.

DOI:


Article DOI: 10.21474/IJAR01/4469      
DOI URL: http://dx.doi.org/10.21474/IJAR01/4469