BIOGENIC SYNTHESIS OF CuO NANOPARTICLES AND THEIR BIOMEDICAL APPLICATIONS: A CURRENT REVIEW.
- Department of Chemistry, University of Management and Technology Lahore-54000, Pakistan.
- Department of Physics, University of Agriculture Faislabad-38000, Pakistan.
- Department of Botany, GC University For Women, Faisalabad-38000, Pakistan.
- Department of Biochemistry, University of Agriculture Faislabad-38000, Pakistan.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
In this paper, brief reviews for the synthesis of copper oxide nanoparticles by the different green routes are described. Since last few years, synthesis of nanoparticles has been attracted considerable attention. The metal oxides are important technology materials used as antibacterial, antioxidant, antifungal as well as catalysts in chemical industries and in electronic and photonic devices. Due to the applications in advanced technologies, researchers have focused more on synthesis of CuO nanoparticles with improved, cost effective ecofriendly synthetic strategies. Copper oxide nanoparticles appear as a brownish-black powder. They can be reduced to metallic copper when exposed to hydrogen or carbon monoxide under high temperature. Copper oxide nanoparticles are used in wide range of applications such as biological, catalysis, gas sensors, magnetic storage media, batteries, solar energy transformer, semiconductors, and field emission. CuO, as a P-type semiconductors exhibiting narrow band gap, have attracted great attention due to its potential application in Nano devices such as electronic, optoelectronics.
- Balzani, V.; Nanoscience and nanotechnology: a personal view of a chemist. 2005, 1(3): 278-283.
- Bednorz, J. G.; and Muller, K. A.; Possible high Tech superconductivity in the Ba-La-Cu-O system, Ten Years of Superconductivity: 1980?1990, Springer Netherlands, 1986, 267-271.
- Ng, C.H.B.; Wai, Y. F.; Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. The Journal of Physical Chemistry B. 2006; 110(42): 20801-20807.
- Ren, G.; Hu, D.; Cheng, E. W.; Vargas-Reus, M. A.; Reip, P.; Allaker, R. P.; Characterization of copper oxide nano particles for antimicrobial applications. International Journal of Antimicrobial Agents. 2009; 33(6): 587?590.
- Kwak, K.; Chongyoup, K.; Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal. 2005; 17(2): 35-40.
- Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K. S.; Ravikumar, V.; Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014; 121: 746-750.
- Yallappa, S.; Manjanna, J.; Sindhe, M. A.; Satyanarayan, N. D.; Pramod, S. N.; Nagaraja, K.; Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using arjuna bark extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013; 110: 108-115.
- Khan SA, Shahid S, Ahmad W, Ullah S. Pharmacological Importance of Clerodendrum Genus: A Current Review. International Journal of Pharmaceutical Science and Research. 2017; 2(2): 22-30.
- Khan SA, Rasool N, Riaz M, Nadeem R, Rashid U, Rizwan K, Zubair M, Bukhari IH, Gulzar T. Evaluation of Antioxidant and Cytotoxicity Studies of Clerodendrum inerme. Asian Journal of Chemistry. 2013; 25(13):7457-7462.
- Khan SA, Jameel M, Kanwal S, Shahid S. Medicinal Importance of Allium Species: A Current Review. International Journal of Pharmaceutical Science and Research. 2017; 2(3): 29-39.
- Khan SA, Shahid S, Khan ZA, Iqbal A. Assessment of Stabilization of Canola Oil, Free Radical Scavenging and Cytotoxic Potential of Peucedanum graveolens (roots). International Journal of Scientific and Research Publications. 2016; 6(3): 529-535.
- Khan SA, Shahid S, Jameel M, Ahmad A. In vitro Antibacterial, Antifungal and GC-MS Analysis of Seeds of Mustard Brown. International Journal of Pharmaceutical Chemistry. 2016; 6(4):107- 115.
- Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S. Green Synthesis of Copper oxide Nanoparticles using Abutilon indicum Leaf Extract: Antimicrobial, Antioxidant and Photocatalytic Dye Degradation Activities. Tropical Journal of Pharmaceutical Research. 2017; 16(4): 743-753.
- Das, S. K.; Khan, M. M. R.; Guhab, A. K.; Naskar, N.; Bioinspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chemistry. 2013; 15: 2548?2557.
- Iravani, S.; Green synthesis of metal nanoparticles using plants. Green Chemistry. 2011; 13(10): 2638?2650.
- Raveendran, P.; Fu, J.; Wallen, S.; Completely ?green? synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society. 2003; 125(46): 13940?13941.
- Parashar, V.; Parashar, R.; Sharma, B.; Pandey, A. C.; Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest Journal of Nanomaterials and Biostructures. 2009; 4(1): 45-50.
- Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V.; Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids and Surfaces B: Biointerfaces. 2013; 108: 80-84.
- Schrofel, A.; Krato?ov?, G.; ?afař?k, I.; ?afař?kov?, M.; Ra?ka, I.; Shor, L. M.; Applications of biosynthesized metallic nanoparticles?A review. Acta biomaterialia. 2014; 10(10): 4023-4042.
- Ipsa, S.; Nayak, P.L.; Synthesis of Copper Nanoparticles Using Syzygium aromaticum (Cloves) Aqueous Extract by Using Green Chemistry. World Journal of Nano Science & Technology. 2013; 2(1): 14-17.
- Vinod, V.; Thekkae, P.; Miroslav, C.; Green synthesis of copper oxide nanoparticles using Gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine. 2013; 8: 889?898.
- Fatih, D.; Ismail, O.; Fatma, O. K.; Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Materials Science and Engineering C. 2016; 60:333?338.
- Naika, H. R.; Lingarajua, K.; Manjunathb, K.; Danith, K.; Nagarajuc, G.; Sureshd, D.; Nagabhushana, H.; Green synthesis of CuO nanoparticles using Gloriosa superba L.extract and their antibacterial activity. Journal of Taibah University for Science. 2015; 9: 7?12.
- Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.; Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract. Applied Nanoscience. 2015; 5: 1017?1021.
- Kumar, P. P. N. V.; Shameem, U.; Pratap, K.; Kalyani, R. L.; Pammi, S. V. N.; Green Synthesis of Copper Oxide Nanoparticles Using Aloe vera Leaf Extract and Its Antibacterial Activity Against Fish Bacterial Pathogens. Bio Nano Science. 2015; 5: 135?139.
- Lingaraju, K.; Naika, H.R.; Manjunath, K.; Nagaraju, G.; Suresh, D.; Nagabhushana, H.; Rauvolfia serpentina-Mediated Green Synthesis of CuO Nanoparticles and Its Multidisciplinary Studies. Acta Metallurgica Sinica (English Letters). 2015; 28(9): 1134?1140.
- Gowdhami, M.; Balagurunathan, R.; Sarkar, B.; Ayyasamy, P. M.; Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis Journal of Photochemistry & Photobiology, B: Biology. 2016; 155: 28-33.
- Udayabhanu,; Nethravathi, P.C.; PavanKumar, M.A.; Suresh, D.; Lingaraju,K.; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C.; Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Materials Science in Semiconductor Processing. 2015; 33: 81?88.
- Awwad, A.M.; Albiss, B.A; Salem N.M; Antibacterial Activity of synthesized Copper Oxide Nanoparticles using Malva sylvestris Leaf Extract. Sikkim Manipal University (SMU) Medical Journal. 2015; 2(1): 91 ? 101.
- Brajesh, K.; Kumari, S.; Luis, C.; Alexis, D.; Yolanda, A.; Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. Journal of Saudi Chemical Society. 2015; 9: 1?6.
- Acharyulu, N. P. S.; Dubey, R. S.; Swaminadham, V.; Kalyani, R. L.; Pratap, K.; Pammi, S. V. N.; Green Synthesis of CuO Nanoparticles using Phyllanthus Amarus Leaf Extract and their Antibacterial Activity Against Multidrug Resistance Bacteria. International Journal of Engineering Research & Technology. 2014; 3(4): 639- 641.
- Abboud,Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B.; Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience. 2014; 4(5): 571-576.
- Rajeshwari, S.; Pattanathu, K.S.M.; Rahman, P. R.; Hasna A. S.; Venckatesh, R.; Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014; 133: 178?181.
- Gopalakrishnana, K.; Rameshb, C.; Ragunathanb, V.; Thamilselvana, M.; Antibacterial Activity Of CuO Nanoparticles On Coli Synthesized From Tridax procumbens Leaf Extract And Surface Coating With Polyaniline. Digest Journal of Nanomaterials and Biostructures, 2012; 7(2): 833?839.
- Renu, S.; Perumal, M.; Viswanathan, M.; Tajudeennasrin, F. K. S. S.; Vilwanathan, R.; Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014; 121: 746?750.
- Jiao, Q.; Chunqiu, L.; Qiao, C.; Xing, Y.; Carbon nanotubes and Cu?Zn nanoparticles synthesis using hyperaccumulator Environmental chemistry letters. 2012; 10(2): 153?158.
- Henam, S. D.; Thiyam, D. S.; Synthesis of Copper Oxide Nanoparticles by a Novel Method and its Application in the Degradation of Methyl Orange. Advance in Electronic and Electric Engineering, 2014; 4(1): 83-88.
- Prasanta, S.; Mitali, S.;Debasish, M.; Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. Journal of Nanostructure in Chemistry. 2014; 4(1): 1-6.
- Reyad-ul-ferdou, M.; Mehedi, R.; Mahamud, M.K.; Sharmi, S.A.; Sohel, M. D.; Pharmacologicals and Phytochemicals Potential of Abutilon indicum: A Comprehensive Review. American Journal of Bio Science. 2015; 3(2-1):5-11.
- Soheyla, H.; Hamed, B.; Eshrat, G.; Farzaneh, N.; Green Synthesis Of Copper Oxide Nanoparticles Using Penicillium Aurantiogriseum, Penicillium Citrinum And Penicillium Waksmanii. Digest Journal of Nanomaterials and Biostructures. 2012; 7(3): 999 ? 1005.
- Panneerselvam, S.; Ramaswamy, S.; Jerry, J.W.; Sambandam, A.; Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chemical Engineering Journal. 2011; 171:136?140.
- Nekrasovaa, G. F.; Ushakovaa, O. S.; Ermakovb, A. E.; Uiminb, M. A.; Byzov, I. V.; Effects of Copper(II) Ions and Copper Oxide Nanoparticles on Elodea densa Planch. Russian Journal of Ecology. 2011; 42(6):458?463.
- Rajendra, S.; Prathap, M.U.A.; Rajkumar, K.; Morphologically controlled synthesis of copper oxides and their catalytic applications in the synthesis of propargylamine and oxidative degradation of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011; 392(1): 271? 282.
- Kooti, M.; Matouri, L.; Fabrication of nanosized cuprous oxide using fehling?s solution. Scientia Iranica. 2010, 17(1): 73-78.
- Abdul, R.; Amri, I.; Desi, J.; Stella, M.; Hanggara, S.; Synthesis Of Copper Oxide Nano Particles By Using Phormidium Cyanobacterium. Indonesian Journal of Chemistry. 2009; 9(3): 355-360.
- Guogang, R. Dawei, H.; Eileen,W.C.; Cheng, M. A.; Vargas-Reus, P. R.; Robert, P.; Allaker.; Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents. 2009; 33:587?590.
- Fei, T.; Wenqing, Y.; Youfei, Z.; Yutao, M.; Yang, T.; Tongguang, X.; Shuhui, L.; Yongf, Z.; Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sensors and Actuators B. 2008; 134:761?768.
- Dongyun, H.; Huaiyu, Y.; Chengyun, Z.; Fuhui, W.; Controlled synthesis of CuO nanoparticles using TritonX-100 based water-in-oil reverse micelles. Powder Technology. 2008; 185(3): 286?290.
- Chun-Hong, K.; Chiu-Hua, C.; Michael, H. H.; Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes, with Five Different Size Ranges from 40 to 420 nm. Advanced Functional Materials. 2007, 17:3773?3780.
- Ali, S.; Majid, M.; Nasrin, S.; Synthesis of nano Cu2O on cotton: Morphological, physical, biological and optical sensing characterizations. Carbohydrate Polymers. 2014; 110: 489?498.
[Shakeel Ahmad Khan, Sammia Shahid, Muhammad Rizwan Sajid, Farah Noreen and Sadia Kanwal. (2017); BIOGENIC SYNTHESIS OF CuO NANOPARTICLES AND THEIR BIOMEDICAL APPLICATIONS: A CURRENT REVIEW. Int. J. of Adv. Res. 5 (Jun). 925-946] (ISSN 2320-5407). www.journalijar.com
Department of Chemistry, University of Management and Technology Lahore-54000, Pakistan