15Aug 2017

NANOSTRUCTURED NI0.9CO2.1O4 SPINEL OXIDE: ELECTROCHEMICAL, SPECTROSCOPIC AND MORPHOLOGICAL INVESTIGATION.

  • Laboratoire de Chimie Physique Organique et d?Analyse Environnementale, D?partement de Chimie, Facult? des Sciences et Techniques, Universit? Cheikh Anta Diop, Dakar, S?n?gal.
  • D?partement de chimie, UFR SATIC, Universit? Alioune Diop, Bambey, S?n?gal.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Nickel cobalt oxide Ni0.9Co2.1O4 powder were prepared by sol-gel via propionic acid technique from mixed aqueous solutions of hydrated cobalt nitrate (Co(NO3)2?6H2O) and hydrated nickel nitrate (Ni(NO3)2?6H2O) as sources of cobalt and nickel respectively. The system evolves toward the formation of the spinel phase, with further temperature thermal treatment at 350 ?C. The structural, morphological, optical and electrochemical properties of the synthesized products were characterized through several techniques including ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy (RS), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). UV-visible absorbance spectrum have indicated that the oxide have higher absorption of ultraviolet light compare to visible light. Raman spectroscopy confirm XRD data through no apparition of any impurity peak. The SEM image reveals a porous structure with nanoplaquettes coexisting with agglomerates of spherical grain size.


  1. Amrut, S. Lanje., Sathish, J. Sharma and Ramchandra, B. Pode. (2010): Magnetic and Electrical Properties of Nickel Nanoparticles prepared by Hydrazine Reduction Method. Scholars Research Library (Archives of Physics Research), Vol.1(1): pp. 49-56.
  2. An, C., Wang, Y., Huang, Y., Xu, Y., Jiao, L., Yuan, H. (2014): Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy, 10: 125-134.
  3. Barakat, N. A. M., Khil, M. S., Sheikh, F. A., Kim, H. Y. (2008): Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process. J. Phys. Chem., C 112: 12225-12233.
  4. Chang, K. H., Lee, Y. F., Hu, C. C., Chang, C. I., Liua, C. L., Yang, Y. L. (2010): A unique strategy for preparing single-phase unitary/binary oxides?graphene?composites. Chem. Commun., 46: 7957?7959.
  1. Dubal, D. P., Gomez-Romero, P., Sankapal, B.R., Holze, R. (2015): Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy, 11: 377?399.
  2. Gautier, J. L., Trollund, E., R?os, E., Nkeng, P., Poillerat, G. (1997): Characterization of thin CuCo204 films prepared by chemical spray pyrolysis. Study of their electrochemical stability by ex situ spectroscopic analysis. J. Electroanal. Chem., 428: 47-56.
  3. Gu?ye, M and Gu?ne, M. (2015): Structural Characterisation of Nickel - Cobalt Spinelrelated
  4. Oxides of NixCo3-xO4 (0 ≤ x ≤ 1.2) Prepared by Four Different Routes using XRD, FTIR, UV-vis-NIR and XPS. Ghana J. Sci., 55: 27-36.
  5. Hosono, E., Fujihara, S., Honma, I., Ichihara. M., Zhou, H. (2006): Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. J. Power Sources, 158: 779.
  1. Hu, C. C., Chen, C. A. (1999): Electrochemical characteristics of cobalt-based spinel oxides - I: Voltammetric behavior and O2 J. Chin. Inst. Chem. Eng., 30: 431.
  2. Hu, C. C., Cheng, C. Y. (2002): Ideally Pseudocapacitive Behavior of Amorphous Hydrous Cobalt-Nickel Oxide Prepared by Anodic Deposition. Electrochem. Solid-State Lett., 5. A43.
  3. Huang, L., Chen, D., Ding, Y., Feng, S., Wang, Z. L., Liu, M. (2013): Nickel?Cobalt Hydroxide Nanosheets Coated on NiCo2O4?Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Lett., 13: 3135-3139.
  1. Jacintho, G.V.M., Brolo, A. G., Corio, P., Suarez, P. A. Z., Rubim, J. C. (2009): Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids. J. Phys. Chem., C 113: 7684?7691.
  2. Larcher, D., Sudant, G., Leriche, J. B., Chabre, Y., Tarascon, J. M. (2002): The electrochemical reduction of Co3O4 in a lithium cell. J. Electrochem. Soc., 149: A234.
  3. Liu, Q., Zhang, X., Yang, B., Liu, Jingyuan., Li, R., Zhang, H., Liu, L., and Wang, J. (2012): Construction of Three-Dimensional Homogeneous NiCo2O4 Core/Shell Nanostructure as High-Performance Electrodes for Supercapacitors. J. Electrochem. Soc., 162 (12): E319-E324.
  4. Liu, Z.-Q. et al. (2013): Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv., 3: 4372?4380.
  5. Liu, Y., Mi, C., Su, L., Zhang, X. (2008): Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim. Acta., 53: 2507.
  6. Lu, Y., Yan, H., Zhang, D., Lin, J., Xue, Y., Li, J., Luo, Y., Tang, C. (2014): Hybrid nanonet/nanoflake NiCo2O4 electrodes with an ultrahigh surface area for supercapacitors. J Solid. State Electrochem., 18: 3143?3152.
  7. Ma, L., Shen, X., Zhou, H., Ji, Z., Chen, K., Zhu, G. (2015): High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem. Eng. J., 262: 980?988.
  8. Mansour, C., Pauporte, T., Ringuede, A., Albin, V., Cassir, M. (2006): Protective coating for MCFC cathode: Low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine. J. Power Sources, 156: 23.
  9. Mendoza, L., Albin, V., Cassir, M., Galtayries, A. (2003): Electrochemical deposition of Co3O4thin layers in order to protect the nickel-based molten carbonate fuel cell cathode. J. Electroanal. Chem., 548: 95.
  10. Monk, P. M. S., Ayub. S. (1997): Solid-state properties of thin film electrochromic cobalt-nickel oxide. Solid State Ionics, 99: 115.
  11. Nkeng, P., Poillerat, G., Koenig, J. F., Chartier, P., Lefez, B., Lopitaux, J., Lenglet, M. (1995): Characterization of Spinel‐Type Cobalt and Nickel Oxide Thin Films by X‐Ray Near Grazing Diffraction, Transmission and Reflectance Spectroscopies, and Cyclic Voltammetry. Electrochem. Soc., 142: 1777-1783.

24.??? Pauporte, T., Mendoza, L., Cassir, M., Bernard, M. C., Chivot, J. (2005): Direct Low-Temperature Deposition of Crystallized CoOOH Films by Potentiostatic Electrolysis. J. Electrochem. Soc., 152: C49.

  1. Ponce, J., Rios, E., Rehspringer, J. L., Poillerat, G., Chartier, P., Gautier, J. L. (1999): Preparation of Nickel Aluminum?Manganese Spinel Oxides NixAl1−xMn2O4for Oxygen Electrocatalysis in Alkaline Medium: Comparison of Properties Stemming from Different Preparation Methods. Sol. State Chem., 145: 23.
  2. Schumacher, L. C., Holzhueter, I., Hill, I. R., Dignam, M. J. (1990): Semiconducting and Electrocatalytic Properties of Sputtered Cobalt Oxide Films. Electrochim. Acta, 35: 975.
  3. Simon, P., Gogotsi, Y., Dunn, B. (2014):? Where do batteries end and supercapacitors begin? Science Magazine, 343: 1210?1211.
  1. Srinivasan, V., Weidner, W. J. (2002): Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources, 108: 15.
  2. Srivastava, M., Uddin, M. E., Singh, J., Kim, N. H., Lee, J. H. (2014): Preparation and characterization of self-assembled layer by layer NiCo2O4?reduced graphene oxide nanocomposite with improved electrocatalytic properties. J. Alloys Compd., 590: 266-276.
  3. Toure, M.,?Guene, M.,?Dieng, M. M.,?Lorquin, J. (1994): Environmental electrolytic influence in faradic capacity electrodes with p-naphtoquinone. Kinetic study of the redox reaction. J. Islamic Acad Sci., 7(3): 175-180.
  4. Trasatti, S. (1991) Physical electrochemistry of ceramic oxides. Electrochim. Acta, 36: 225.
  1. Umeshbabu, E., Rajeshkhanna, G., Ranga Rao, G. (2014): Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int. J. Hydrog. Energy, 39: 15627?15638.
  2. Umeshbabu, E., Rajeshkhanna, G., Ranga Rao, G. (2016): Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application. J. Solid State Electrochem., 20 (7): 1837-1844.
  1. Wang, H., Jang, Y. I., Huang, B., Sadoway, D. R., Chiang, Y. M. (1999): TEM study of electrochemical cycling‐induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. Electrochem. Soc., 146: 473.
  2. Wang, H., Gao, Q., Jiang, L. (2011): Facile Approach to Prepare Nickel Cobaltite Nanowire Materials for Supercapacitors. Small, 7: 2454.
  1. Windisch Jr, C.F., Exarhos, G. J., Ferris, K. F., Engelhard, M. H., Stewart, D. C. (2001): Infrared transparent spinel films with p-type conductivity. Thin Solid Films, 398-399: 45-52.
  2. Windisch, J.C.F., Ferris, K.F., Exarhos, G.J. (2001): in: The 47th international symposium:
  3. Vacuum, thin films, surfaces/interfaces, and processing NAN06, AVS, Boston, Massachusetts
  4. (USA), pp. 1647-1651.
  5. ?Yuan, C., Li, J., Hou, L., Zhang, X., Shen, L., Lou, X. W. D. (2012): Ultrathin Mesoporous NiCo2O4?Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Adv. Funct. Mater., 22: 4592.
  1. Zhang, X., Xiao, J., Zhang, X., Meng, Y., Xiao, D. (2016): Three-Dimensional Co3O4 Nanowires@Amorphous Ni(OH)2 Ultrathin Nanosheets Hierarchical Structure for Electrochemical Energy Storage. Electrochim. Acta, 191: 758-766.

[Mamadou Gu?ye, Papa Charles Harris Mandiamy, Makhtar Gu?ne and Abdou Aziz Diagne. (2017); NANOSTRUCTURED NI0.9CO2.1O4 SPINEL OXIDE: ELECTROCHEMICAL, SPECTROSCOPIC AND MORPHOLOGICAL INVESTIGATION. Int. J. of Adv. Res. 5 (Aug). 816-823] (ISSN 2320-5407). www.journalijar.com


Mamadou GUEYE.


DOI:


Article DOI: 10.21474/IJAR01/5124      
DOI URL: https://dx.doi.org/10.21474/IJAR01/5124