18Aug 2017


  • UMSL College of Optometry, One University Blvd, 417 Marillac Hall, St Louis, MO 63121.
Crossref Cited-by Linking logo
  • Abstract
  • References
  • Cite This Article as
  • Corresponding Author

Reduced visual performance due to intraocular scatter and environmental glare conditions are two of the most commonly reported symptoms in a clinical setting. Study of glare and the neural processes that underlie the phenomena have been studied since the early 19th century. This overview provides a historical perspective of glare and intraocular scatter, types and definitions, role of ophthalmic materials in glare mitigation and the role of macular pigment in glare amelioration. The 3 hypothesized roles of macular pigment (MP) to include Retinal Protection, Neural Efficiency and Optical Enhancement as well as an examination of the 3 subsets of Optical Enhancement as it related to glare reduction will also be explored. Existing literature has explored the detailed spatial and chemical properties of MP and this review will discuss how differing glare types can be affected by differing MP spatial distributions and how tailored oral supplementation of MP constituents can enhance the glare reduction benefits.

  1. Vos JJ. Reflections on glare. Lighting Research & Technology. 2003;35(2):163-175.
  2. Vos JJ. On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation. Clinical and experimental optometry. 2003;86(6):363-370.
  3. Vos JJ, Boogaard J. Contribution of the cornea to entoptic scatter. Journal Optical Society America. 1963:53(7):869-873.
  4. Wooten BR, Hammond BR. Macular pigment: influences on visual acuity and visibility. Progress in retinal and eye research. 2002;21(2):225-240.
  5. Hemenger RP. Sources of intraocular light scatter from inversion of an empirical glare function. Applied optics. 1992;31(19):3687-3693.
  6. Whitaker D, Steen R, Elliott DB. Light scatter in the normal young, elderly, and cataractous eye demonstrates little wavelength dependency. Optometry & Vision Science. 1993;70(11):963-968.
  7. Wooten BR, Geri GA. Psychophysical determination of intraocular light scatter as a function of wavelength. Vision research. 1987;27(8):1291-1298.
  8. Vos JJ. Disability glare--a state of the art report. Commission International de l'Eclairage Journal. 1984;2:39-53.
  9. Van Den Berg TJTP, Tan KE. Light transmittance of the human cornea from 320 to 700 nm for different ages. Vision research. 1994;34(11):1453-1456.
  10. Coppens JE, Franssen L, van den Berg TJ. Wavelength dependence of intraocular straylight. Experimental eye research. 2006;82(4):688-692.
  11. Franssen L, Coppens JE, van den Berg TJ. Compensation comparison method for assessment of retinal straylight. Investigative Ophthalmology & Visual Science. 2006;47(2):768-776.
  12. van den Berg TJ. Analysis of intraocular straylight, especially in relation to age. Optometry & Vision Science. 1995;72(2):52-59.
  13. Fletcher LM, Engles M, Hammond BR. Visibility through atmospheric haze and its relation to macular pigment.?Optometry & Vision Science. 2014;91(9):1089-1096.
  14. Nourrit V, Kelly JM. Intraocular scatter and visual performances. Optom Pract. 2009;10:117-28.
  15. Aguirre R, Barraza J, Colombo E. The effect of glare on visibility depends on spatial frequency. Journal of Vision. 2007;7(9):259-259.
  16. Aslam TM, Haider D, Murray IJ. Principles of disability glare measurement: an ophthalmological perspective. Acta Ophthalmologica. 2007;85(4):354-360.
  17. Stringham JM, Hammond BR. The glare hypothesis of macular pigment function. Optometry & Vision Science. 2007;84(9):859-864.
  18. Van den Berg TJTP. On the relation between glare and straylight. Documenta Ophthalmologica. 1991;78(3-4):177-181.
  19. Digre KB, Brennan KC. Shedding light on photophobia. Journal of Neuro-ophthalmology. 2012;32(1):68.
  20. Stringham JM, Fuld K, Wenzel AJ. Action spectrum for photophobia. JOSA A. 2003;20(10):1852-1858.
  21. Stringham JM, Fuld K, Wenzel AJ. Spatial properties of photophobia. Investigative ophthalmology & visual science. 2004;45(10):3838-3848.
  22. Lapid-Gortzak R, van der Meulen IJ, Nieuwendaal CP, van den Berg TJ. Alleviating debilitating photophobia and secondary exotropia caused by increased straylight by widening a small posterior capsulotomy. Journal of Cataract & Refractive Surgery. 2011;37(2):413-414.
  23. Mainster MA, Turner PL. Glare's causes, consequences, and clinical challenges after a century of ophthalmic study. American journal of ophthalmology. 2012;153(4):587-593.
  24. Bargary G, Furlan M, Raynham PJ, Barbur JL, Smith AT. Cortical hyperexcitability and sensitivity to discomfort glare. Neuropsychologia. 2015;69:194-200.
  25. Pokorny J, Cao D. Rod and cone contributions to mesopic vision. Proceedings of CIE 2010 Lighting Quality & Energy Efficiency. 2010;9-20.
  26. Sheehy JB. Dazzling glare: Protection criteria versus visual performance. Interim report, September 1985-August 1990. Naval Air Development Center, Warminster, PA (USA).
  27. Olson RJ, Werner L, Mamalis N, Cionni R. New intraocular lens technology. American journal of ophthalmology. 2005;140(4):709-716.
  28. Kvansakul J, Rodriguez‐Carmona M, Edgar DF, Barker FM, Ko?pcke W, Schalch W, Barbur JL. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic and Physiological Optics. 2006;26(4):362-371.
  29. Kvansakul J, Rodriguez‐Carmona M, Edgar DF, Barker FM, Ko?pcke W, Schalch W, Barbur JL. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic and Physiological Optics. 2006;26(4):362-371.
  30. Jungnickel H, Babovsky H, Kiessling A, Gebhardt M, Grein HJ, Kowarschik R. Effects on vision with glare after correction of monochromatic wavefront aberrations. Journal of Refractive Surgery. 2011;27(8):602-612.
  31. McDonald JE, Kotb AMEM, Decker BB. Effect of brimonidine tartrate ophthalmic solution 0.2% on pupil size in normal eyes under different luminance conditions. Journal of Cataract & Refractive Surgery. 2001;27(4):560-564.
  32. Kesler A, Shemesh G, Rothkoff L, Lazar M. Effect of brimonidine tartrate 0.2% ophthalmic solution on pupil size. Journal of Cataract & Refractive Surgery. 2004;30(8):1707-1710.
  33. Beatty S, Boulton M, Henson D, Koh HH, Murray IJ. Macular pigment and age related macular degeneration. British Journal of Ophthalmology. 1999;83(7):867-877.
  34. Landrum JT, Bone RA, Joa H, Kilburn MD, Moore LL, Sprague KE. A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Experimental eye research. 1997;65(1):57-62.
  35. Hammond BR, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ, Edwards RB, Snodderly DM. Dietary modification of human macular pigment density. Investigative ophthalmology & visual science. 1997;38(9):1795-1801.
  36. Bernstein PS, Delori FC, Richer S, van Kuijk FJ, Wenzel AJ. The value of measurement of macular carotenoid pigment optical densities and distributions in age-related macular degeneration and other retinal disorders. Vision research. 2010;50(7):716-728.
  37. Bone RA, Landrum JT, Fernandez L, Tarsis SL. Analysis of the macular pigment by HPLC: retinal distribution and age study. Investigative ophthalmology & visual science. 1988;29(6):843-849.
  38. Trieschmann M, Van Kuijk FJGM, Alexander R, Hermans P, Luthert P, Bird AC, Pauleikhoff D. Macular pigment in the human retina: histological evaluation of localization and distribution. Eye. 2008;22(1):132.
  39. Stringham JM, Hammond BR. Macular pigment and visual performance under glare conditions. Optometry and Vision Science. 2008;85(2):82-88.
  40. Stringham JM, Garcia PV, Smith PA, McLin LN, Foutch BK. Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort. Investigative ophthalmology & visual science. 2011;52(10):7406-7415.
  41. Hammond BR, Wooten BR, Engles M, Wong JC. The influence of filtering by the macular carotenoids on contrast sensitivity measured under simulated blue haze conditions. Vision research. 2012;63:58-62.
  42. Puell MC, Palomo‐Alvarez C, Barrio AR, G?mez‐Sanz FJ, P?rez‐Carrasco MJ. Relationship between macular pigment and visual acuity in eyes with early age‐related macular degeneration. Acta ophthalmologica. 2013;91(4).
  43. Renzi LM, Hammond BR. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic and Physiological Optics. 2010;30(4):351-357.
  44. Wenzel AJ, Fuld K, Stringham JM, Curran-Celentano J. Macular pigment optical density and photophobia light threshold. Vision research. 2006;46(28):4615-4622.
  45. Sujak A, Okulski W, Gruszecki WI. Organisation of xanthophyll pigments lutein and zeaxanthin in lipid membranes formed with dipalmitoylphosphatidylcholine. Biochimica et Biophysica Acta-Biomembranes. 200;1509(1):255-263.
  46. Hemenger RP. Dichroism of the macular pigment and Haidinger?s brushes. JOSA. 1982;72(6):734-737.
  47. Bone RA, Landrum JT, Tarsis SL. Preliminary identification of the human macular pigment. Vision research. 1985;25(11):1531-1535.
  48. N'soukpo?-Kossi CN, Sielewiesiuk J, Leblanc RM, Bone RA, Landrum JT. Linear dichroism and orientational studies of carotenoid Langmuir-Blodgett films. Biochimica et Biophysica Acta-Biomembranes. 1988;940(2):255-265.
  49. Bone RA, Landrum JT. Distribution of macular pigment components, zeaxanthin and lutein, in human retina. Methods in enzymology. 1992; 213:360-366.
  50. Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Investigative ophthalmology & visual science. 1984;25(6):674-685.
  51. Reading VM, Weale RA. (1974). Macular pigment and chromatic aberration. JOSA. 1974;64(2):231-234.
  52. Thibos LN. Calculation of the influence of lateral chromatic aberration on image quality across the visual field. JOSA A. 1987;4(8):1673-1680.
  53. Bone RA. MP in Henle fiber membranes: Model for Haidinger?s brushesXXXXXXXXXX
  54. Walls GL, Judd HD. The intra-ocular colour-filters of vertebrates. British journal of ophthalmology. 1933;17(11):641.
  55. Nussbaum JJ, Pruett RC, Delori FC. MACULAR YELLOW PIGMENT: The First 200 Years. Retina. 1981;1(4):296-310.
  56. Stringham JM. Compensation for light loss resulting from filtering by macular pigment: relation to the S-cone pathway. Optometry & Vision Science. 2006;83:887-894.

[Chris Putnam. (2017); OVERVIEW OF GLARE TYPES AND THEIR RELATIONSHIP WITH MACULAR PIGMENT OPTICAL DENSITY. Int. J. of Adv. Res. 5 (Aug). 1131-1140] (ISSN 2320-5407). www.journalijar.com

Chris Putnam
UMSL College of Optometry One University Blvd, 417 Marillac Hall St Louis, MO 63121


Article DOI: 10.21474/IJAR01/5165      
DOI URL: http://dx.doi.org/10.21474/IJAR01/5165