EXPLORING THE EFFECT OF NANOTECHNOLOGY PROCESS ON PHYSICAL AND CHEMICAL PROPERTIES OF HERBS: A SHORT REVIEW.
- Faculty of Applied Science, Universiti Teknologi MARA Shah Alam, Selangor.
- Faculty of Hotel and Tourism Management, Universiti Teknologi MARA Selangor.
- NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA Shah Alam, Selangor.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
Nanotechnology is the technology involves in the manufacturing and development of materials in the nanoparticle dimension which is less than 100 nm. However, due to numerous successful applications by employing nanomaterial with particle size above 100 nm, it is agreed that cut off 100 nm for nanoparticle is arbitrary. Thus nanoparticle is also define as particles in the range of 10 nm to 1000 nm. Abundance of studies being conducted to produce nanoparticles from herbs and this has become a core research area in many countries around the world. The potential of the nanotechnology process application in food research is in the spotlight and has attracted much attention in many countries recently due to the outstanding properties of nanoparticles which cannot be found in the bulk material. The smaller particle size developed through the nanotechnology process is reported to have high water-holding capacity, high fluidity and a high water solubility index. Moreover, the easy penetration of nanoparticle into the structure of food, well disperse and increases in the nutritive component make the nanotechnology process an interesting alternative technology to be applied in the food industry.
- Borhan, M. Z., Ahmad, R., Rusop, M., & Abdullah, S. (2014). Effect of nanonization on physicochemical properties of Centella asiatica Advanced Materials Research, 917, 106-112.
- Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., & de Heer, C. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53(1), 52-62.
- Brewer, L. R., Kubola, J., Siriamornpun, S., Herald, T. J., & Shi, Y.C. (2014). Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chemistry, 152, 483-490.
- Cha, S. M., Son, B. Y., Lee, J. S., Baek, S. B., Kim, S. L., & Ku, J. H. (2012). Effect of particle size on physico-chemical properties and antioxidant activity of corn silk powder. Korean Journal of Crop Science, 57(1), 41-50.
- Chau, C.F., Wang, Y.T., & Wen, Y.L. (2007). Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chemistry, 100(4), 1402-1408.
- Chen, J. P., Tai, C. Y., & Chen, B. H. (2007). Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica). Food Chemistry, 100, 1005-1010.
- Dyminska, L., Szatkowski, M., Wrobel Kwiatkowska, M., Zuk, M., Kurzawa, A., Syska, W. (2012). Improved properties of micronized genetically modified flax fibers. Journal of Biotechnology, 164, 292-299.
- Gao, L., Liu, G., Wang, X., Liu, F., Xu, Y., & Ma, J. (2011). Preparation of a chemically stable quercetin formulation using nanosuspension technology. International Journal of Pharmaceutics, 404(1-2), 231-237.
- Giao, M. S., Pereira, C. I., Fonseca, S. C., Pintado, M. E., & Malcata, F. X. (2009). Effect of particle size upon the extent of extraction of antioxidant power from the plants Agrimonia eupatoria, Salvia and Satureja montana. Food Chemistry, 117, 412-416.
- He, S., Qin, Y., Walid, E., Li, L., Cui, J., & Ma, Y. (2014). Effect of ball-milling on the physicochemical properties of maize starch. Biotechnology Reports, 3(0), 54-59.
- Hemery, Y., Chaurand, M., Holopainen, U., Lampi, A.M., Lehtinen, P., & Piironen, V. (2011). Potential of dry fractionation of wheat bran for the development of food ingredients, part I: Influence of ultra-fine grinding. Journal of Cereal Science, 53(1), 1-8.
- Hoffmann Ribani, R., Huber, L. S., & Rodriguez Amaya, D. B. (2009). Flavonols in fresh and processed Brazilian fruits. Journal of Food Composition and Analysis, 22, 263-268.
- Hu, J., Chen, Y., & Ni, D. (2012). Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT-Food Science and Technology, 45, 8-12.
- Huang, Z. Q., Lu, J. P., Li, X. H., & Tong, Z. F. (2007). Effect of mechanical activation on physicochemical properties and structure of cassava starch. Carbohydrate Polymers, 68(1), 128-135.
- Huang, Z. Q., Xie, X. L., Chen, Y., Lu, J. P., & Tong, Z. F. (2008). Ball-milling treatment effect on physicochemical properties and features for cassava and maize starches. Comptes Rendus Chimie, 11, 73-79.
- Jessica, D. M., Elizabeth, A. W., & B., J. J. (2014). Characterisation of milling effects on the physical and chemicalnature of herbaceous biomass with comparison of fast pyrolysisproduct distributions using Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 108, 234-247.
- Jiechao, L., Zhonggao, J., Xinhong, L., Lei, H., & Liu, L. (2011). Effect of ultrafine pulverization on properties of apple pomace powder. Advanced Materials Research, 236-238, 2560-2563.
- Kazemimostaghim, M., Rajkhowa, R., Tsuzuki, T., & Wang, X. (2013). Production of submicron silk particles by milling. Powder Technology, 241, 230-235.
- Kim, J. Y., & Lim, S. T. (2009). Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydrate Polymers, 76, 110-116.
- Lian, X. J., Liu, L. Z., Guo, J. J., Li, L., & Wu, C. Y. (2013). Screening of seeds prepared from retrograded potato starch to increase retrogradation rate of maize starch. International Journal of Biological Macromolecules, 60, 181-185.
- Liu, J. R., Chen, G. F., Shih, H. N., & Kuo, P. C. (2008). Enhanced antioxidant bioactivity of Salvia miltiorrhiza (Danshen) products prepared using nanotechnology. Phytomedicine, 15(1-2), 23-30.
- Liu, D. G., Wu, Q. L., Chen, H. H., & Chang, P. R. (2009). Transitional properties of starch colloid with particle size reduction from micro to nanometer. Journal of Colloid and Interface Science, 339, 117-124.
- Ma, P. Y., Fu, Z. Y., Su, Y. L., Zhang, J. Y., Wang, W. M., & Wang, H. (2009). Modification of physicochemical and medicinal characterisation of Liuwei Dihuang particles by ultrafine grinding. Powder Technology, 191(1-2), 194-199.
- Majzoobi, M., Pashangeh, S., Farahnaky, A., Eskandari, M. H., & Jamalian, J. (2014). Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran. Journal of Food Science Technology, 51(10), 2755-2761.
- Martinez Bustos, F., Lopez Soto, M., San Martin Martinez, E., Zazueta Morales, J. J., & Velez Medina, J. J. (2007). Effects of high energy milling on some functional properties of jicama starch (Pachyrrhizus erosus Urban) and cassava starch (Manihot esculenta Crantz). Journal of Food Engineering, 78(4), 1212-1220.
- Mayer-Miebach, E., Adamiuk, M., & Behsnilian, D. (2012). Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture, 2, 244-258.
- Pacheco Palencia, L. A., Duncan, C. E., & Talcott, S. T. (2009). Phytochemical composition and thermal stability of two commercial acai species, Euterpe oleracea and Euterpe precatoria. Food Chemistry, 115, 1199-1205.
- Pasanphan, W., Rattanawongwiboon, T., Choofong, S., Guven, O., & Katti, K. (2015). Irradiated chitosan nanoparticle as a water-based antioxidant and reducing agent for a green synthesis of gold nanoplatforms. Radiation Physics and Chemistry, 106, 360-370.
- Paiva, F. F., Vanier, N. L., Berrios, J. D. J., Pan, J., Villanova, F. A., & Takeoka, G. (2014). Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling. Journal of Food Composition and Analysis, 35, 10-17.
- Rajkhowa, R., Wang, L., Kanwar, J., & Wang, X. (2009). Fabrication of ultrafine powder from eri silk through attritor and jet milling. Powder Technology, 191(1-2), 155-163.
- Rajkhowa, R., Wang, L., & Wang, X. (2008). Ultra-fine silk powder preparation through rotary and ball milling. Powder Technology, 185(1), 87-95.
- Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent adances. Food Research International, 44, 1875-1887.
- Reblova, Z. (2012). Effect of temperature on the antioxidant activity of phenolic acids. Czech Journal of Food Sciences, 30(2), 171-177.
- Ren, G.Y., Li, D., Wang, L.J., Ozkan, N., & Mao, Z. H. (2010). Morphological properties and thermoanalysis of micronized cassava starch. Carbohydrate Polymers, 79(1), 101-105.
- Rosa, N. N., Barron, C., Gaiani, C., Dufour, C., & Micard, V. (2013). Ultra-fine grinding increases the antioxidant capacity of wheat bran. Journal of Cereal Science, 57(1), 84-90.
- Sabourin, V., & Ayande, A. (2015). Commercial oppurtunities and market demand for nanotechnologies in agrobusiness sector. Journal Of Technology Management And Innovation, 10(1), 40-52.
- Santos, R. C. V., Alves, A. F. S., Fausto, V. P., Pizzutti, K., Barboza, V. (2014). Antimicrobial activity of tea tree oil nanoparticles against American and European foulbrood diseases agents. Journal of Asia-Pacific Entomology, 17, 343-347.
- Su, Y. L., Fu, Z.Y., Quan, C. J., & Wang, W. M. (2006). Fabrication of nano Rhizama Chuanxiong particles and determination of tetramethylpyrazine. Transactions of Nonferrous Metals Society of China, 16(Supplement 1), S393-S397.
- Sun, Q., Fan, H., & Xiong, L. (2014). Preparation and characterisation of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydrate Polymers, 106(0), 359-364.
- Tao, B., Ye, F., Li, H., Hu, Q., Xue, S., & Zhao, G. (2014). Phenolic profile and in vitro antioxidant capacity of insoluble dietary fiber powders from citrus (Citrus junos ex Tanaka) pomace as affected by ultrafine grinding. Journal of Agricultural and Food Chemistry, 62, 7166-7173.
- Tian, Y., Wang, X., Xi, R., 2, Pan, W., Jiang, S., & Li, Z. (2014). Enhanced antitumor activity of realgar mediated by milling it to nanosize. International Journal of Nanomedicine, 9, 745-757.
- Tsai, P. J., Chen, Y. S., Sheu, C. H., & Chen, C. Y. (2011). Effect of nanogrinding on the pigment and bioactivity of Djulis (Chenopodium formosanum). Journal Agricultural Food Chemistry, 59, 1814-1820.
- Wei, Z., Jiali, Z., & Wenshui, X. (2014). Effect of ball-milling treatment on physicochemical and structural properties of chitosan. International Journal of Food Properties, 17(1), 26-37.
- Wu, T. H., Yen, F. L., Lin, L. T., Tsai, T. R., Lin, C. C., & Cham, T. M. (2008). Preparation, physicochemical characterisation, and antioxidant effects of quercetin nanoparticles. International Journal of Pharmaceutics, 346(1-2), 160-168.
- Xie, X., Liu, Q., & Cui, S. W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Research International, 39(3), 332-341.
- Yen, F. L., Wua, T. H., Lin, L. T., Cham, T. M., & Lin, C. C. (2008). Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food and Chemical Toxicology, 46, 1771-1777.
- Yu, C. C., Lee, C. L., & Pan, T. M. (2006). A novel formulation approach for preparation of nanoparticulate red mold rice. Journal Agricultural Food Chemistry, 54(18), 6845-6851.
- Zhang, M., Zhang, C. J., & Shrestha, S. (2005). Study on the preparation technology of superfine ground powder of Agrocybe chaxingu Journal of Food Engineering, 67, 333-337.
- Zhang, L. H., Xu, H. D., & Li, S. F. (2009). Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder. Innovative Food Science & Emerging Technologies, 10(4), 633-637.
- Zhang, W., Zhang, J., Jiang, Q., & Xia, W. (2012). Physicochemical and structural characteristics of chitosan nanopowders prepared by ultrafine milling. Carbohydrate Polymers, 87, 309-313.
- Zhang, M., Wang, F., Liu, R., Tang, X., Zhang, Q., & Zhang, Z. (2014). Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum LWT - Food Science and Technology, 58, 594-601.
- Zhao, X., Yang, Z., Gai, G., & Yang, Y. (2009). Effect of superfine grinding on properties of ginger powder. Journal of Food Engineering, 91(2), 217-222.
- Zhao, X., Du, F., Zhu, Q., Qiu, D., Yin, W., & Ao, Q. (2010). Effect of superfine pulverization on properties of Astragalus membranaceus Powder Technology, 203, 620-625.
- Zhao, G., Wang, C., Liao, Z., Liang, X., Cao, Y., & Chen, X. (2011). Comparative study of physicochemical properties of dragon?s blood powders. Advanced Materials Research, 311-313, 560-565.
- Zhu, K., Huang, S., Peng, W., Qian, H., & Zhou, H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International, 43(4), 943-948.
- Zhu, Y., Dong, Y., Qian, X., Cui, F., Guo, Q., & Zhou, X. (2012). Effect of superfine grinding on antidiabetic activity of bitter melon powder. International Journal of Molecular Science, 13, 14203-14218.
- Zhu, F., Du, B., Li, R., & Li, J. (2014). Effect of micronization technology on physicochemical and antioxidant properties of dietary fiber from buckwheat hulls. Biocatalysis and Agricultural Biotechnology, 3(3), 30-34.
- Zhuang, Y., Zhang, Y., & Sun, L. (2012). Characteristics of fibre-rich powder and antioxidant activity of pitaya (Hylocereus undatus) peels. International Journal of Food Science and Technology, 47, 1279-1285.
[Norhidayah. A, Noriham. A and Rusop. M. D. (2017); EXPLORING THE EFFECT OF NANOTECHNOLOGY PROCESS ON PHYSICAL AND CHEMICAL PROPERTIES OF HERBS: A SHORT REVIEW. Int. J. of Adv. Res. 5 (Dec). 1665-1671] (ISSN 2320-5407). www.journalijar.com
Faculty of Hotel and Tourism Management, Universiti Teknologi MARA Selangor