ALUMINUM TOXICITY VS SALICYLIC ACID EFFECTS IN PEARL MILLET METHYLOME.
- Pan African University Institute of basic Sciences, Technology and Innovation, department of Molecular Biology and Biotechnology, PO Box 62000-00200 Nairobi, Kenya.
- Jomo Kenyatta University of Agriculture and Technology, Department of Horticulture, PO Box 62000-00200 Nairobi, Kenya.
- Institut S?n?galais de Recherches Agricoles, CNRA, P.O Box 57, Bambey, S?n?gal.
- South Eastern Kenya University, Department of Biology, P.O. Box 170- 90200, Kitui, Kenya.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
Aluminum toxicity is one of most distributed plant abiotic stress in the world, causing root inhibition and therefore crop losses. Plants continuously adapt its defense to abiotic stresses through different mechanisms including DNA methylation. The methylome variation is influenced by external cues from environment or by hormonal signals. Salicylic acid is one of the most important hormones in plants, directing growth and defense. Its application is seen having the capacity to elicit plant defense mechanisms. In this study, the effects of aluminum toxicity and salicylic acid on DNA methylation were carried out in pearl millet using MSAP epigenotyping and ELISA test. The methylation analysis revealed aluminum treatment increased the global and CCGG methylation level whereas application of salicylic acid had reverse effects. Moreover, most of the methylation or demethylation due respectively to aluminum and salicylic acid, occurred at the external cytosine. This finding reveals that salicylic acid could overcome the negative effects of aluminum toxicity through DNA demethylation pathways.
- AL-Lawati, A., Al-Bahry, S., Victor, R., & Yaish, M. W. (2016). Salt stress alters DNA methylation levels in alfalfa (Medicago spp), 15(1): 1?16.
- Bednarek, P. T., Orłowska, R., & Niedziela, A. (2017). A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress. BMC Plant Biology, 17(1): 79. https://doi.org/10.1186/s12870-017-1028-0
- Bennet, R. J., & Breen, C. (1991). The aluminium signal: new dimensions to the mechanism of aluminium tolerance. Plant Soil, 134: 153?166.
- Budikova, S., & Durcekova, K. (2004). Aluminium accumulation in roots of Al-sensitive barley cultivar changes root cell structure and induces callose synthesis. Biologia, 59: 215?220.
- Chen, Q., Guo, C.-L., Wang, P., Chen, X.-Q., Wu, K.-H., Li, K.-Z., ? Chen, L.-M. (2013). Up-regulation and interaction of the plasma membrane H+-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba) under Al stress. Plant Physiology and Biochemistry, 70: 504?511. https://doi.org/10.1016/j.plaphy.2013.06.015
- Guo, C. L., Chen, Q., Zhao, X. L., Chen, X. Q., Zhao, Y., & Wang, L. (2013). Al-enhanced expression and interaction of 14-3-3 protein and plasma membrane H+-ATPase is related to Al-induced citrate secretion in an Al-resistant black soybean. Plant Mol. Biol. Rep, 31: 1012?1024.
- Kimatu, J. N., Jiang, L., Ngezahayo, F., Songdi, C., Quan-Yuan, Y., Pang, J., & Liu, B. (2013). Alteration in cytosine DNA methylation patterns and levels induced by aluminium toxicity stress in maize varieties. International Journal of Modern Agriculture International Journal of Modern Agriculture International Journal of Modern Agriculture, 2(21). Retrieved from http://ens.bi/wp-content/uploads/2017/11/Aluminium-toxicity-in-maize.pdf
- Kopittke, P. M., Moore, K. L., Lombi, E., Gianoncelli, A., Ferguson, B. J., Blamey, F. P. C., ? Tollenaere, A. (2015). Identification of the Primary Lesion of Toxic Aluminum in Plant Roots. Plant Physiology, 167(4): 1402?1411. https://doi.org/10.1104/pp.114.253229
- Latzel, V., Allan, E., Bortolini Silveira, A., Colot, V., Fischer, M., & Bossdorf, O. (2013). Epigenetic diversity increases the productivity and stability of plant populations. Nature Communications, 4?: 2875. https://doi.org/10.1038/ncomms3875
- Liu, N., Song, F., Zhu, X., You, J., Yang, Z., & Li, X. (2017). Salicylic Acid Alleviates Aluminum Toxicity in Soybean Roots through Modulation of Reactive Oxygen Species Metabolism. Frontiers in Chemistry, 5: 96. https://doi.org/10.3389/fchem.2017.00096
- L?pez-Bucio, J., Nieto-Jacobo, M. F., Ram?rez-Rodr?guez, V., & Herrera-Estrella, L. (2000). Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science: An International Journal of Experimental Plant Biology, 160(1): 1?13. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11164572
- Ngom, B., Sarr, I., Kimatu, J., Mamati, E., & Kane, N. A. (2017). Genome-wide analysis of cytosine DNA methylation revealed salicylic acid promotes defense pathways over seedling development in pearl millet. Plant Signaling & Behavior, 12(9): e1356967. https://doi.org/10.1080/15592324.2017.1356967
- Panda, S. K., Baluska, F., & Matsumoto, H. (2009). Aluminum stress signaling in plants. Plant signaling & behavior, 4(7): 592?597.
- Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research ? an update. Bioinformatics, 28: 2537?2539.
- P?rez-Figueroa, A. (2013). msap : a tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Molecular Ecology Resources, 13(3): 522?527. https://doi.org/10.1111/1755-0998.12064
- Rengel, Z., & Zhang, W. H. (2003). Role of dynamics of intracellular calcium in aluminum toxicity syndrome. New Phytologist, 159: 295?314.
- Ryan, P. R., Ditomaso, J. M., & Kochian, L. V. (1993). Aluminum toxicity in roots: an investigation of special sensitivity and the role of the root cap. J Exp Bot, 44: 437?446.
- Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M. S. L., Suravajhala, P., & Kavi Kishor, P. B. (2016). Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. BioMetals, 29(2): 187?210. https://doi.org/10.1007/s10534-016-9910-z
- Schmohl, N., & Horst, W. J. (2000). Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.). Plant, Cell and Environment, 23: 735?742.
- Shen, H., He, L. F., Sasaki, T., Yamamoto, Y., Zheng, S. J., Ligaba, A., ? Matsumoto, H. (2005). Citrate Secretion Coupled with the Modulation of Soybean Root Tip under Aluminum Stress. Up-Regulation of Transcription, Translation, and Threonine-Oriented Phosphorylation of Plasma Membrane H+-ATPase. PLANT PHYSIOLOGY, 138(1): 287?296. https://doi.org/10.1104/pp.104.058065
- Takahashi, K., Hayashi, K. -i., & Kinoshita, T. (2012). Auxin Activates the Plasma Membrane H+-ATPase by Phosphorylation during Hypocotyl Elongation in Arabidopsis. PLANT PHYSIOLOGY, 159(2): 632?641. https://doi.org/10.1104/pp.112.196428
- Taspinar, M. S., Aydin, M., Sigmaz, B., Yagci, S., Arslan, E., & Agar, G. (2018). Aluminum-Induced Changes on DNA Damage, DNA Methylation and LTR Retrotransposon Polymorphism in Maize. Arabian Journal for Science and Engineering, 43(1): 123?131. https://doi.org/10.1007/s13369-017-2697-6
- Watanabe, T., & Osaki, M. (2002). Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: A review. Commun Soil Sci Plant Anal, 33: 1247?1260.
- Zhang, C., & Hsieh, T.-F. (2013). Heritable Epigenetic Variation and its Potential Applications for Crop Improvement. Plant Breeding and Biotechnology, 1(4): 307?319. https://doi.org/10.9787/PBB.2013.1.4.307
- Zhang, J., Wei, J., Li, D., Kong, X., Rengel, Z., Chen, L., ? Chen, Q. (2017). The Role of the Plasma Membrane H+-ATPase in Plant Responses to Aluminum Toxicity. Frontiers in Plant Science, 8: 1757. https://doi.org/10.3389/fpls.2017.01757
- Zheng, S. J., & Yang, J. L. (2005). Target sites of aluminum phytotoxicity. Plant, 49: 321?331.
[Baba Ngom, Edward Mamati, Ibrahima Sarr and Josphert Kimatu. (2018); ALUMINUM TOXICITY VS SALICYLIC ACID EFFECTS IN PEARL MILLET METHYLOME. Int. J. of Adv. Res. 6 (Apr). 517-524] (ISSN 2320-5407). www.journalijar.com
Pan African University