SIMULATED OPTICAL PROPRIETES OF GOLD-SILVER ALLOY NANOSHELL WITH DIFFERENT COMPOSITION.

- Laboratoire de Photonique et de Nano-Fabrication, Facult? des sciences et Techniques Universit? Cheikh AntaDiop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar, S?n?gal.
- Laboratoire de Physique des Plasmas et de Recherches Interdisciplinaires, D?partement de Physique,Universit? Cheikh AntaDiop de Dakar, BP 5005 Dakar-Fann, Dakar, S?n?gal.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
In this paper the optical characteristics of the core-shell nanoparticles based on Au-Ag nanoshell core and materials silica shells are presented. Theoretical results on the optical characteristics gold-silver, as well as the measured properties of (Au-Ag)@SiO2 are investigated considered the surface plasmon resonance phenomenon associated with the surfaces of metals. This study allows us to determine the influences of the metal rate and silica thickness on the resonance plasmon surface. The profile of the resonance bands of a gold nanoparticle in contact with a silver metal is determined by the composition distribution of each metal. Discussion on the influence of various parameters (composition, thickness of shell?) on optical properties of nanoshell nanoparticles.The numerical simulationshowed that the resonance band is in visible region after silica coating on Au-Ag nanoparticles. A semiclassical theory (Mie theory) is used to study the optical behaviour of nanoshell nanoparticles. This theory is useful to improve resonance frequency to size ratio study at different percentage of gold and silver. However, the resonance frequency show an evolution toward weak wavelength and also according (Au-Ag)@SiO2nanospheres, results for these structure demonstrated potential applications in windows optical, because of high absorption cross section occurring in the wide band of visible spectrum.
- Adams, D. M., Brus, L., Chidsey, C. E. D., Creager, S., Creutz, C., Kagan, C. R., Kamat, P. V., Lieberman, M., Lindsay, S., Marcus, R. A., Metzger, R. M., Michel-Beyerle, M. E., Miller, J. R., Newton, M. D., Rolison, D. R., Sankey, O., Schanze, K. S., Yardley, J., Zhu, X. Y. (2003):Charge transfer on the nanoscale: current status. Phys. Chem., B 107:6668-6697.
- Alvarez, M. M., Khoury, J. T., Schaaff, T. G., Shafigullin, M. N., Vezmar, I. and Whetten, R. L. (1997):Optical Absorption Spectra of Nanocrystal Gold Molecules. Phys. Chem., B 101:3706-3712.
- Ashkarran, A. A. and Bayat, A. (2013): Surface plasmon resonance of metal nanostructures as a complementary technique for microscopic size measurement. International Nano Letters, 3:1-10.
- Brzobohat?, O., ?iler, M., Trojek, J., Chv?tal, L., Kar?sek, V., and Zem?nek, P. (2015): Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.Optics Express,23:8179-8189.
- Caruso, F. (2001): Nanoengineering of particle surfaces. Mater.,13:11-22.
- Chen, J., Wiley, B., McLellan, J., Xiong, Y., Li, Z. Y.and Xia, Y. (2005):Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized viagalvanic replacement reactions. Nano Lett., 5:2058-62.
- Cherukuri, P., Glazer, E. S. and Curley, S. A. (2010): Targeted Hyperthermia Using Metal Nanoparticles.Adv Drug Deliv Rev., 62:339-345.
- Daneshvar, H., Nelms, J., Muhammad, O., Jackson, H., Tkach, J., Davros, W., Peterson, T., Vogelbaum, M. A., Bruchez, M. P., Toms, S. A. (2008): Nanomedicine 3:21.
- Erickson, T. A.andTunnell, J. W.GoldNanoshells in Biomedical Applications.
- Feis, A., Gellini, C., Salvi, P. R., Becucci, M. (2014): Photoacoustic excitation profiles of gold nanoparticles. Photoacoustics, 2:47-53.
- Frederix, F., Friedt, J. M., Choi, K. H., Laureyn, W., Campitelli, A., Mondelaers, D., Maes, G., and Borghs, G. (2003):Biosensing based on light absorption of nanoscaled gold and silver particles.Anal. Cheam., 75: 6894-6900.
- Green, M. (2008): Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Solar Energy Materials & Solar Cells, 92:1305-1310.
- Heavens, O. S. (1955):Optical Properties of Thin Solid Films. London, Butterworths Scientific Publications.
- Horvath, H. (2009): Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. Journal of Quantitative Spectroscopy &Radiative Transfer, 110:787-799.
- Kelly, K. L., Coronado, E., Zhao, L. L., Schatz, G. C. (2003):The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Phys. Chem., B 107:668.
- Law, W. C., Yong, K. T., Roy, H. D., Ding, H., Hu, R., Zhao, W., Prasad, P. N. (2009): Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging.Small, 5:1302-1310.
- Lewinski, N., Colvin, V. and Drezek, R. (2008):Experimental Validation and Simulation of Fourier and Non-Fourier Heat Transfer Equation during Laser Nano-Phototherapy of Lung Cancer Cells: An in Vitro Assay. Small, 4:26-49.
- Link, S., Wang, Z. L. and El-Sayed, M. A, (1999): Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. Phys. Chem., B 103:3529-3533.
- Loo, C., Lin, A., Hirsch, L., Lee, M. , Barton, J., Halas, N., West, J., Drezek, R. (2004): Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer,Technology in Cancer. Research & Treatment, 3:33-40.
- Mulvaney, P. (1996): Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 12:788-800.
- Nie, L., Liu, F., Ma, P., Xiao, X. (2014): Applications of gold nanoparticles in optical biosensors. J. Biomed Nanotechnol, 10: 2700-2721.
- Pourbaix, M. (1984):Electrochemical corrosion of metallic biomaterials.Biomaterials, 5:122-34.
- Qiu, J. D., Cui, S. G., Liang, R. P. (2010):Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubes by a hydrothermal synthetic method. Acta., 171: 333-339.
- (2014): n, k 0.27 at 1.200 μm.
- Sambou, A., Ngom, B. D., Gomis, L., Beye, A. C. (2016): Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region.American Journal of Nanomaterials, 4: 63-69.
- Sambou, A., Tall, P. D., Talla, KH.,Sakho, O., Ngom, B. D., Beye, A. C. (2017): Control of the Surface Plasmon Resonance of Two Configurations of Nanoparticles: Simple Gold Nanorod and Gold/Silica Core/Shell.Nanoscience and Nanotechnology Research, 4:1-6.
- Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., Boritz, C. (2007):Synthesis and Study of Silver Nanoparticles.Journal of Chemical Education, 84:322.
- Soul?,, Allouche, J., Dupin, J. C., Martinez, H. (2013): Design of Ag?Au nanoshell core/mesoporous oriented silica shell nanoparticles through a sol?gel surfactant templating method. Microporous and Mesoporous Materials, 171:72-77.
- Wu, C., Yu, C., Chu,M. (2011): A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermaltherapy.International Journal of Nanomedicine, 6:807-813.
- Wu, W., Zhou, T., Berliner, A., Banerjee, P., Zhou, S. (2010):Smart Core−Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery. Mater., 22:1966-1976.
- Xia, Y., Gates, B., Yin, Y., and Lu, Y. (2000):Monodispersed Colloidal Spheres: Old Materials with New Applications. Mater., 12:693-713.
- Zhang, A. Q., Qian, D. J. and Chen, M. (2013):Simulated optical properties of noble metallic nanopolyhedra with different shapes and structures.The European Physical Journal, D67:1-9.
[Abel Sambou, Pascal Djicoly Bassene, Moustapha Thiam, Louis Gomis, Alioune Aidara Diouf, Saidou Diallo, Kharouna Talla and Aboubaker Chedikh Beye. (2018); SIMULATED OPTICAL PROPRIETES OF GOLD-SILVER ALLOY NANOSHELL WITH DIFFERENT COMPOSITION. Int. J. of Adv. Res. 6 (Oct). 64-73] (ISSN 2320-5407). www.journalijar.com
Laboratoire de Photonique et de Nano-Fabrication