21Sep 2018

SEMI-SIMULTANOUS SACCHARIFICATION AND FERMENTATION OF Opuntia ficus-indica CLADODE FOR BIOETHANOL PRODUCTION USING WILD STRAIN.

  • Centro de Investigaci?n y Asistencia en Tecnolog?a y Dise?o del Estado de Jalisco, A.C. Sede Sureste, Interior del Parque Cient?fico y Tecnol?gico de Yucat?n, Tablaje catastral No. 31264, Km 5.5 carretera Sierra Papacal-Chuburn? Puerto, 97302, M?rida, Yucat?n, M?xico.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Semi-simultaneous saccharification and fermentation processes (SSSF) are capable of improving ethanol production compared with separate hydrolysis and fermentation (SHF) systems because there are reduce of enzymes inhibition due conversion of sugars by yeasts immediately after saccharification. In this work a wild Acinetobacter pittii bacterium and a wild Kluyveromyces marxianus yeast were used for SSSF process. The bacterium, isolated from decayed cladodes, had capacity of produce cellulases enzymes, while the yeast, isolated from termite stomach, had fermentative capacity. The SSSF was tested on Opuntia ficus-indica cladode flour medium (CFM) with and without agitation (0 and 200 rpm). Ethanol yields (Yp/s) obtained with CFM were 0.43?0.01 and 0.18?0.01 for 0 and 200 rpm, respectively, that represents 84% and 35% of efficiency of SSSF. Ethanol final concentrations reached 11.7?0.02 g/L and 5.80?0.02 g/L for 0 and 200 rpm, respectively. The ability of A. pittii for cellulases production combined with K. marxianus fermentation capacity in their bests conditions, represented in higher bioethanol production during SSSF.


  1. Atlas, R. (2004): Handbook of microbiological media (3rd ed.). CRC Press. Boca Rat?n, USA.
  2. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P. and Ballesteros, I. (2004): Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem., 39(12): 1843?1848.
  3. Cardona Alzate, C. A. and S?nchez Toro, O. J. (2006): Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy, 31(13): 2111?2123.
  4. Cotana, F., Cavalaglio, G., Gelosia, M., Coccia, V., Petrozzi, A., Ingles, D. and Pompili, E. (2015): A comparison between SHF and SSSF processes from cardoon for ethanol production. Crops Prod., 69: 424?432.
  5. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956): Colorimetric method for determination of sugars and related substances. Chem., 28: 350?356.
  6. Ekperigin, M. M. (2007): Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp . African J Biotechnol., 6(1): 28?33.
  7. Ghose, T. K. (1987): International Union of Pure Commission on Biotechnology. Measurement of cellulase activities. Pure Appl. Chem., 59(2): 257?268.
  8. Gon?alves, F. A., Ruiz, H. A., Nogueira, C. D. C., Santos, E. S. Dos, Teixeira, J. A. and De Macedo, G. R. (2014): Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel, 131: 66?76.
  9. Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M. and Ardjmand, M. (2013): Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Sust. Energ. Rev., 27: 77?93.
  10. Hahn-H?gerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. and Gorwa-Grauslund, M. F. (2007): Towards industrial pentose-fermenting yeast strains. Microbiol. Biotechnol., 74(5): 937?953.
  11. Kuloyo, O. O., du Preez, J. C., Garc?a-Aparicio, M. del P., Kilian, S. G., Steyn, L. and G?rgens, J. (2014): Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World J. Microbiol. Biotechnol., 30(12): 3173?3183.
  12. Lo, Y., Lu, W., Chen, C., Chen, W. and Chang, J. (2010): Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Eng. J., 53(1): 77?84.
  13. Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R. and Monot, F. (2009): New improvements for lignocellulosic ethanol. Opin. Biotechnol., 20(3): 372?380.
  14. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Chem., 31(3): 426?428.
  15. Mohagheghi, A., Tucker, M., Grohmann, K. and Wyman, C. (1992): High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol, 33.
  16. Morales, M., Quintero, J., Conejeros, R. and Aroca, G. (2015): Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance. Sust. Energ. Rev., 42: 1349?1361.
  17. Moreno, A. D., Ibarra, D., Ballesteros, I., Gonz?lez, A. and Ballesteros, M. (2013): Bioresource technology comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Technol., 135: 239?245.
  18. P?rez-Pimienta, J. A., Vargas-Tah, A., L?pez-Ortega, K. M., Medina-L?pez, Y. N., Mendoza-P?rez, J. A., Avila, S. and Mart?nez, A. (2017): Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production. Technol., 225: 191?198.
  19. Purohit, A., Rai, S. K., Chownk, M., Sangwan, R. S. and Yadav, S. K. (2017): Xylanase from Acinetobacter pittii MASK 25 and developed magnetic cross-linked xylanase aggregate produce predominantly xylopentose and xylohexose from agro biomass. Technol., 244(June): 793?799.
  20. Retamal, N., Duran, J. M. and Fernandez, J. (1987): Ethanol-production by fermentation of fruits and cladodes of prickly pear cactus [Opuntia-ficus-indica (L) Miller]. Sci. Food Agric., 38(3): 213?218.
  21. Singh, A. and Bishnoi, N. R. (2013): Ethanol production from pretreated wheat straw hydrolyzate by Saccharomyces cerevisiae via sequential statistical optimization. Ind Crops Prod., 41: 221?226.
  22. Sumbhate, S., Nayak, S., Goupale, D., Tiwari, A. and Jadon, R. S. (2012): Colorimetric method for the estimation of ethanol in alcoholic-drinks, 1: 1?6.
  23. Zaafouri, K., Ziadi, M., Ben Farah, R., Farid, M., Hamdi, M. and Regaya, I. (2016): Potential of tunisian alfa (Stipa tenassicima) fibers for energy recovery to 2G bioethanol: Study of pretreatment, enzymatic saccharification and fermentation. Biomass Bioenergy, 94: 66?77.
  24. Zhang, L., You, T., Zhang, L., Yang, H. and Xu, F. (2014): Enhanced fermentability of poplar by combination of alkaline peroxide pretreatment and semi-simultaneous saccharification and fermentation. Technol., 164: 292?298.
 

[Cindy Mariel Lopez-Dominguez, Manuel Octavio Ramirez-Sucre and Ingrid Mayanin Rodriguez-Buenfil. (2018); SEMI-SIMULTANOUS SACCHARIFICATION AND FERMENTATION OF Opuntia ficus-indica CLADODE FOR BIOETHANOL PRODUCTION USING WILD STRAIN. Int. J. of Adv. Res. 6 (Sep). 877-884] (ISSN 2320-5407). www.journalijar.com


Ingrid Mayanin Rodriguez Buenfil
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C.

DOI:


Article DOI: 10.21474/IJAR01/7747      
DOI URL: https://dx.doi.org/10.21474/IJAR01/7747