08Jan 2019

CURRENT CONCEPTS AND TECHNIQUES IN ENHANCEMENT OF FRACTURE HEALING IN CANINES: A REVIEW.

  • Assistant Professor, Department of Veterinary Clinical Complex,LalaLajpatRai University of Veterinary and Animal Sciences, Hisar.
  • M.V.Sc Scholar, Department of Veterinary Surgery and Radiology,College of Veterinary SciencesLalaLajpatRai University of Veterinary and Animal Sciences, Hisar.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Traditionally used metallic implants for fracture stabilisation even though have potential capability for fracture healing have been associated with significant disadvantages like patient incompliance and implant loosening leading to mal union, non-union and dis-union. Veterinary orthopaedics during the last decade has visualised a significant development with respect to use of biomaterials particularly in the field of fracture treatment and stabilisation. A large variety of biomaterials are available in the form of bone grafts and bone substitutes for commercial use to treat significant bone defects due to trauma and to enhance the rate of fracture healing. The present article aims to give an insight into the various bone grafts and bone substitutes available, their potential uses, applications, advantages and limitations in veterinary field.


  1. Anderson, K.J. (1961). The behaviour of autogenous and homogenous bone transplants in the anterior chamber of the rats eye. A histological study of the effect of the size of the implant. J. Bone Joint Surg. Am. 43(A): 454-464.
  2. Asti, A. and Gioglio, L. (2014). Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs. 37(3): 187-205.
  3. Babis, G.C. and Soucacos, P.N. (2005). Bone scaffolds: The role of mechanical stability and instrumentation. Injury. 36(Suppl): S38-S44.
  4. Basset, C.A.L. (1972). Clinical implications of cell function in bone grafting. Clin, Orthop. Rel. Res. 87: 49-59.
  5. Bauer, T.W. and Muschler, G.W. (2000). Bone Graft Materials: An overview of Basic science. Clin. Orthop. Relat. Res. 371: 10-27.
  6. Beaumont, P. (1970). Fracture of acrylic bone cement. Lancet. 860.
  7. Bishnoi, A.K. (2013). Studies on Efficacy of Composite Bone Grafts in Comminuted Long Bone Fracture Healing Stabilised by Intramedullary Interlocking Nailing in Canines. Part of Ph. D thesis submitted to Guru AngadDev Veterinary and Animal Sciences University.
  8. Bohatyrewicz, A., Bohatyrewicz, R., Klek, R., Kaminski, A., Dobiecki, K., Bialecki, P., et al. (2006). Factors determining the contamination of bone tissue procured from cadaveric and multiorgan donors. Transplant Proc.38: 301-304.
  9. Bostman, O.A. (1991). Current concepts review absorbable implants for the fixation of fractures. J. Bone Joint Surg. 73(A): 148-153.
  10. Bostrom, M. P., Saleh, K. J., Einhorn, T. A. (1999). Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop. Clin. North Am. 30: 647-58.
  11. Cheng, L., Ye, F., Yang, R., Lu, X., Shi, Y., Li, L., Fan, H. and Bu, H. (2010). Osteoinduction of hydroxyappatite/ beta-tricalcium phosphate bioceramics in mice with a fractured fibula. ActaBiomaterialia. 6: 1569-1574.
  12. Cho, T.J., Gerstenfeld, L.C. and Einhorn, T.A. (2002). Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J. Bone Miner. Res.17:513-520.
  13. Chow, L.C. (2009). Next generation calcium phosphate- based biomaterials. Dent. Mater. J. 28(1): 1-10.
  14. Connolly, J. F. (1995). Injectable bone marrow preparations to stimulate osteogenic repair. Clin. Orthop. Relat. Res. 313: 8-18.
  15. Daculsi, G. (1988). Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 19: 1473-1478.
  16. Dimitriou, R., Jones, E., McGonagle, D. and Glannoudis, P.V. (2011). Bone regeneration: Current concepts and future directions. BMC Medicine. 9: 66.
  17. Einhorn, T.A. (1998). The cells and molecular biology of fracture healing. Clinical Orthopaedic Related Research. 355: 7-21.
  18. Fidancevska, E., Ruseska, G., Bossert, J. Lin, Y. M. and Boccaccini, A.R. (2007) Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater. Chem. Phys. 103: 95?100.
  19. Gazdag, A.R., Lane, J.M., Glaser, D. and Forster, R.A. (1995). Alternatives to autogenous bone graft: efficacy and indications. J. Am. Acad. Orthop. Surg. 3: 1-8.
  20. Ghosh, S.K., Nandi, S.K., Kundu, B., Datta, S., De, D.K., Roy, S.K., et al. In vivo response of porous hydroxyappatite and beta Tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J. Biomed Mater Res B ApplBiomater. 86: 217-227.
  21. Giannoudis, P.V. and Einhorn, T.A. (2009). Bone Morphogenetic Proteins in Musculoskeletal Medicine. Injury. 40(Suppl 3): S1-3.
  22. Giannoudis, P.V., Tzioupis, C. and Green. J (2009). Surgical Technique: how I do it? The reamer/irrigator/aspirator (RIA) system. Injury. 40(11): 1231-1236.
  23. Greenwald, A.S., Boden, S.D., Goldberg, V.M., Khan, Y., Laurencin, C.T. and Rosier, R.N. (2001). American Academy of Orthopaedic Surgeons. The committee on Biological implants. Bone graft substitutes: facts, fictions and applications. J. Bone Joint Surg. Am. 83-A (Suppl. 2): 98-103.
  24. Groeneveld, E.H., van den Bergh, J.P., Holzmann, P. et al. (1999) Mineralization processes in demineralized bone matrix grafts in human maxillary si?nus floor elevations. J. Biomed. Mater. Res. 48(4): 393?402.
  25. Habibovic, P. and de Groot, K. Osteoinductive biomaterials-properties and relevance in bone repair. J. Tissue Eng. Regen. Med. 1: 25-32.
  26. Hannouche, D., Petite, H. and Sedel, L. (2001). Current Trends in the Enhancement of Fracture Healing. The Journal of Bone and Joint Surgery. 83(B): 157-164.
  27. Huang, S., Wen, Bo.,Bian, W. and Yan, H. (2012). Reconstruction of Comminuted long bone fracture using CF/CPC scaffolds manufactured by rapid prototyping. Med. Sci. Monit. 18(11): 435-440.
  28. Johnson, K.A. (1986). Cancellous bone graft collection from the tibia in dogs. Veterinary Surgery. 15: 334-338.
  29. Johnson, K.D., Frierson, K.E., Keller, T.S., Cook, C., Scheinberg, R., Zerwekh, J., Meyers, L. and Sciandini, M.F. (1996). Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological and radiographic analysis. J. Orthop. Res.14:351-369.
  30. Khan, S.N., Cammisa, F.P., Sandhu, H.S., Diwan, A.D., Girardi, F.P. and Lane, J.M. (2005). The biology of bone grafting. J. Am. Acad. Orthop. Surg. 13: 77-86.
  31. Kontakis, G.M., Pagkalos, J.E., Tosounidis, T.I., Melissas, J. and Katonis, P. (2007). Bioabsorbable materials in orthopaedics. ActaOrthop. Belg. 73: 159-169.
  32. Kim, S.K., Kim, Y.J., Yoon, T.L., Park, Su. A., Cho, I.H., Kim, E.J., Kim, I.A. and Shin, J.W. (2004). The characteristics of hydroxyappatite-chitosan-PMMA bone cement. Biomaterials. 25: 5715-5723.
  33. Lanz, O.I., Lewis, D.D., Madison, J.B., Miller, G.J. and Martin, D.E. (1999). A Biomechanical comparison of screw and wire fixation with and without polymethylmethacrylate reinforcement for acetabular osteotomy stabilisation in dogs. Veterinary Surgery. 28: 161-170.
  34. Larsson, S. (2006). Cement Augmentation in fracture treatment. Scandinavian Journal of Surgery. 95: 111-118.
  35. Larsson, S. and Hannink, G. (2011). Injectable bone graft substitutes: Current products, their characteristics and indications and new developments. Injury. 42: S30-S34.
  36. Laurencin, C.T. and Lane, J.M. (1994). Poly (lactic acid) and poly(glycolic acid): orthopaedic surgery applications. In: Brighton, C.T., Friedlaender, G. and Lane, J.M. editors. Bone formation and repair. Rosemcut, IL: American Academy of Orthopaedic Surgeons. p. 325-339.
  37. Laursen, M., Christensen, F.B., Burger, C. and Lind, M. (2003). Optimal handling of fresh cancellous bone graft- Different preoperative storing techniques evaluated by in vitro osteoblast like cello metabolism. ActaOrthop. Scand. 74: 490-496.
  38. Marx, R.E. and Wong, M.E. (1987). A technique for the comparession and carriage of autogenous bone during bone grafting procedures. J. Oral Maxillofac. Surg. 45: 988-989.
  39. Mukherjee, D.P., Tunkle, A.S., Roberts, R.A., Clavenna, A., Rogers, S. and Smith, D. (2003). An Animal evaluation of a paste of chitosan glutamate and hydroxyappatite as a synthetic bone graft material. J. Biomed Mater. Res. B Appl. Biomater. 67B: 603-609.
  40. Nandi, S.K., Roy, S., Mukherjee, P., Kundu, B., De, D.K. and Basu, D. (2010). Orthopaedic Application of bone graft and graft substitutes: a review. Indian J. Med. Res. 132:15-30.
  41. Noshi, T., Yoshikawa, T., Ikeuchi, M., Dohi, Y., Ohgushi, H, Horiuchi, K., et al. (2000). Enhancement of the invivoosteogenic potential of marrow/ hydroxyappatite composites by bovine bone morphogenetic protein. J. Biomed. Mater. Res. 52: 621-630.
  42. Ouhayoun, J.P., Shabana, A.H.M., Issahakian, S., Patat, J.L., Guillemin, G., Sawaf, M.H. and Forest, N. (1992). Histological evaluation of natural coral skeleton as grafting material in miniature swine mandible. J. Mater. Sci. Mater. Med. 3: 222-228.
  43. Pajamaki, K.J., Andersson, O.H., Lindholm, T.S., Karlsson, K.H. and Yli-Urpo, A. (1993). Induction of new bone by allogenic demineralized bone matrix combined to bioactive glass composite in the rat. Ann. Chiru. Gynaecol. 207(Suppl): 137-143.
  44. Penwick, R. C., Mosier, D. A. and Clark, D. M. (1991). Healing of canine autogenous bone graft donor sites. Veterinary Surgery 20: 229-234.
  45. Perry, C.R. (2000). Bone repair techniques, bone graft and bone graft substitutes. ClinOrthopRelat Res. 360: 71-86.
  46. Pilliar, R.M., Filiaggi, M.J., Wells, J.D., Grynpas, M.D. and Kandel, R.A. (2001). Porous calcium polyphosphate scaffolds for bone substitute applications- in vitro characterization. Biomaterials. 22: 963-972.
  47. Popkov, A.V., Popkov, D.A., Kononovich, N.A., Gorbach, Ye. N., Ir?ianov, Yu. M., Tverdoklebov, S.I. and Bol?basov, Ye. N. (2016). Osseointegration of the intramedullary implant in fracture of the diaphysis of a long bone. Journal of Global Pharma Technology. 11(8): 01-07.
  48. Refai, A.K., Textor, M., Brunette, D.M. and Waterfield, J.D. (2004) Effect of titanium surface topography on macrophage activation and secretion of proinflamatory cytokines and chemokines. J. Biomed. Mater. Res. A. 70:194?205.
  49. Salmasi, S., Nayyer, L., Seifalian, A.M. and Blunn, G.W. (2016). Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of Polymeric Bone Tissue Engineered Scaffolds. The Open Orthopaedic Journal. 10(Suppl-3): 900-919.
  50. Samartzis, D., Shen, F.H., Goldberg, E.J. and An, H.S. (2005). Is autograft the gold standard in achieving radiographic fusion in one level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine. 30: 1756-1761.
  51. Sen, M. K. and Miclau, T. (2007). Autologous iliac crest bone graft: should it still be the gold standard for treating non-unions? Injury. 38(1): 75-80.
  52. Sun, L., Xu, H.H., Takagi, S. and Chow, L.C. (2007). Fast setting calcium phosphate cement ?chitosan composite: mechanical properties and dissolution rates. J. Biomater Appl. 21(3): 299-315.
  53. Szponder, T., Mytnik, E. and Jaegermann, Z. (2013). Use of calcium sulphate as a biomaterial in the treatment of bone fractures in rabbits- preliminary study. Bull. Vet. Inst. Pulawy. 57: 119-112.
  54. Tay, B. K., Patel, V. V. and Bradford, D. S. (1999). Calcium sulfate- and calcium phosphate based bone substitutes. Mimicry of the mineral phase of bone. Orthop. Clin. North Am. 30 (4): 615-23.
  55. Vaccaro, A.R. (2002). The role of osteoconductive scaffold in synthetic bone graft. Orthopaedics. 25: S571-S578.
  56. Vaishya, R., Chauhan, M. and Vaish. A. (2013). Bone Cement. Journal of Clinical Orthopaedics and Trauma. 4: 157-163.
  57. Vardhan, K.H., Prasad, V.D., Sreenu, M. and Syaamsundar, N. (2017). Histopathological Evaluation of Polymethyl Methacrylate and Hydroxyappatite Implants for Fracture Healing in Rabbits. R.R.Jo.V.S.T. 6(3): 3-6.
  58. Venkatesan, J. and Kim, S.K. (2014). Nano-hydroxyappatite composite biomaterials for bone tissue engineering review. J. Biomed Nanotechnol. 8(9): 5744-5794.
  59. Welch, R.D., Zhang, H. and Bronson, D.G. (2003). Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J. Bone Joint Surg. Am. 67: 105-112.
  60. Younger, E.M. and Chapman, M. W. (1989). Morbidity at bone graft donor sites. J. Orthop. Trauma. 3(3):192-195.
  61. Yuan, H., Chen, N, Lu, X. and Zhen, B. Experimental study of natural hydroxyappatite/chitosan composite on reconstructing bone defects. J. Nanjing Med. Univ. 22: 6372-6375.
  62. Zamprogno, H. C. D. D. M. (2004). Evaluation of bone grafting materials in cats: A comparison of cancellousautograft, cancellous allograft and bioglass in a femoral defect model. M.Sc., Mississippi State University.
  63. Zhang, H., Ye, X.J. and Li, J.S. (2009). Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Biomed Mater. 4:450-457.

[Sandeep Saharan and Ribu Varghese Mathew. (2019); CURRENT CONCEPTS AND TECHNIQUES IN ENHANCEMENT OF FRACTURE HEALING IN CANINES: A REVIEW. Int. J. of Adv. Res. 7 (Jan). 312-320] (ISSN 2320-5407). www.journalijar.com


Ribu Varghese Mathew
Department of Veterinary Surgery and Radiology, College of Veterinary Sciences Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar

DOI:


Article DOI: 10.21474/IJAR01/8329      
DOI URL: https://dx.doi.org/10.21474/IJAR01/8329