REVIEW FOR QUANTUM EFFECTS ON GRAVITATIONALLY BOUND NEUTRON STAR BINARIES.
- School of Physical science and Technology, Guangxi Normal University Guilin, 541004, P. R. China.
- Abstract
- References
- Cite This Article as
- Corresponding Author
Since the quantum field theory was invented at the end of 1920s, attempts have been made to apply it to gravitational field. After more than 20 years, the formal quantum theory of gravity, which describes any systems as an action function in a canonical Hamiltonian method, achieved for the first time a state of completion. Contrary to the situation held for the canonical theory, a covariant treatment also was developed to deal with the physical conditions such that effects of vacuum processes must be taken into account. In this review, we start from a brief introduction to the history of construction of quantum theory of gravity and consider the applications of two quantization methods to inspiraling neutron star binary systems. We mainly focus on the gravitational quantum effects on dynamics of the gravitational quanta radiated from different systems by using canonical method and on the gravitational potential of the binaries by employing the covariant treatment. The possible detections and constraints to the quantum effects are also discussed.
- Rosenfeld, Ann. Physik 5, 113 (1930).
- Rosenfeld, Z. Physik 65, 589 (1930).
- S. DeWitt, Ph. D. thesis, Harvard University (1950).
- G. Bergmann, Helv. Phys. Acta Suppl. 4, 79 (1956).
- A. M. Dirac, Can. J. Math. 2, 129 (1950).
- A. E. Pirani & A. Schild, Phys. Rev. 79, 986 (1950).
- W. Higgs, ?Integration of Secondary Constraints in Quantized General Relativity,? Phys. Rev. Lett. 1, 373 (1958) Erratum: [Phys. Rev. Lett. 3, 66 (1959)].
- A. M. Dirac, ?Generalized Hamiltonian dynamics,? Proc. Roy. Soc. Lond. A 246, 326 (1958).
- A. M. Dirac, ?The Theory of gravitation in Hamiltonian form,? Proc. Roy. Soc. Lond. A 246, 333 (1958).
- A. M. Dirac, ?Fixation of coordinates in the Hamiltonian theory of gravitation,? Phys. Rev. 114, 924 (1959).
- S. DeWitt, ?Quantum Theory of Gravity. 1. The Canonical Theory,? Phys. Rev. 160, 1113 (1967).
- P. Feynman, ?Quantum theory of gravitation,? Acta Phys. Polon. 24, 697 (1963).
- S. DeWitt, ?Quantum Theory of Gravity. 2. The Manifestly Covariant Theory,? Phys. Rev. 162, 1195 (1967).
- S. DeWitt, ?Quantum Theory of Gravity. 3. Applications of the Covariant Theory,? Phys. Rev. 162, 1239 (1967).
- Arnowitt, S. Deser and C. W. Misner, ?Gravitation: An Introduction to Current Research?, edited by L. Witten John Wiley & Sons, Inc., New York, (1962).
- A. Wheeler, ?Relativity Groups and Topology?, Les Holches Lectlres, Gordon and Breach Science Publishers, Inc., New York, (1964).
- Einstein, Ann.Phys. 354, 769 (1916).
- H. Stairs, ?Testing general relativity with pulsar timing,? Living Rev. Rel. 6, 5 (2003).
- M. Will, ?The Confrontation between General Relativity and Experiment,? Living Rev. Rel. 17, 4 (2014).
- Kramer and N. Wex, ?The double pulsar system: A unique laboratory for gravity,? Class. Quant. Grav. 26, 073001 (2009).
- Weinberg, ?The Quantum Theory of Fields?, Cambridge University Press, Cambridge, UK, (1995).
- G. Riess et al. [Supernova Search Team], ?Observational evidence from supernovae for an accelerating universe and a cosmological constant,? Astron. J. 116, 1009 (1998).
- Perlmutter et al. [Supernova Cosmology Project Collaboration], ?Measurements of Omega and Lambda from 42 high redshift supernovae,? Astrophys. J. 517, 565 (1999).
- Weinberg, ?The Cosmological Constant Problem,? Rev. Mod. Phys. 61, 1 (1989).
- Hinterbichler, ?Theoretical Aspects of Massive Gravity,? Rev. Mod. Phys. 84, 671 (2012).
- de Rham, ?Massive Gravity,? Living Rev. Rel. 17, 7 (2014).
- Fierz and W. Pauli, ?On relativistic wave equations for particles of arbitrary spin in an electromagnetic field,? Proc. Roy. Soc. Lond. A 173, 211 (1939).
- de Rham, J. T. Deskins, A. J. Tolley and S. Y. Zhou, ?Graviton Mass Bounds,? Rev. Mod. Phys. 89, no. 2, 025004 (2017).
- Talmadge, J. P. Berthias, R. W. Hellings and E. M. Standish, ?Model Independent Constraints on Possible Modifications of Newtonian Gravity,? Phys. Rev. Lett. 61, 1159 (1988).
- P. Abbott et al. [LIGO Scientific and Virgo Collaborations], ?Observation of Gravitational Waves from a Binary Black Hole Merger,? Phys. Rev. Lett. 116, no. 6, 061102 (2016).
- P. Abbott et al. [LIGO Scientific and Virgo Collaborations], ?GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,? Phys. Rev. Lett. 116, no. 24, 241103 (2016).
- P. Abbott et al. [LIGO Scientific and Virgo Collaborations], ?Tests of general relativity with GW150914,? Phys. Rev. Lett. 116, no. 22, 221101 (2016); Erratum: [Phys. Rev. Lett. 121, no. 12, 129902 (2018)].
- S. Finn and P. J. Sutton, ?Bounding the mass of the graviton using binary pulsar observations,? Phys. Rev. D 65, 044022 (2002).
- Lee, F. A. Jenet, R. H. Price, N. Wex and M. Kramer, ?Detecting massive gravitons using pulsar timing arrays,? Astrophys. J. 722, 1589 (2010).
- P. Abbott et al. [LIGO Scientific and Virgo Collaborations], ?GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,? Phys. Rev. Lett. 119, no. 16, 161101 (2017) .
- H. Taylor and J. M. Weisberg, ?A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16? Astrophys. J. 253, 908 (1982).
- M. Weisberg, D. J. Nice and J. H. Taylor, ?Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16,? Astrophys. J. 722, 1030 (2010).
- C. C. Freire et al., ?The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar- tensor gravity,? Mon. Not. Roy. Astron. Soc. 423, 3328 (2012).
- Damour and G. Esposito-Farese, ?Nonperturbative strong field effects in tensor - scalar theories of gravitation,? Phys. Rev. Lett. 70, 2220 (1993).
- Damour and G. Esposito-Farese, ?Tensor - scalar gravity and binary pulsar experiments,? Phys. Rev. D 54, 1474 (1996).
- M. Zhang et al., ?Study of measured pulsar masses and their possible conclusions,? Astron. Astrophys. 527, A83 (2011).
- Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, ?Shapiro Delay Measurement of A Two Solar Mass Neutron Star,? Nature 467, 1081 (2010).
- Antoniadis et al., ?A Massive Pulsar in a Compact Relativistic Binary,? Science 340, 6131 (2013).
- Wang, C. M. Zhang, Y. H. Zhao, Y. Kojima, H. X. Yin and L. M. SOng, ?Spin Period Evolution of Recycled Pulsar in Accreting Binary,? Astron. Astrophys. 526, A88 (2011).
- Salgado, D. Sudarsky and U. Nucamendi, ?On spontaneous scalarization,? Phys. Rev. D 58, 124003 (1998).
- Palenzuela, E. Barausse, M. Ponce and L. Lehner, ?Dynamical scalarization of neutron stars in scalar-tensor gravity theories,? Phys. Rev. D 89, 044024 (2014).
- Damour and G. Esposito-Farese, ?Tensor multiscalar theories of gravitation,? Class. Quant. Grav. 9, 2093 (1992).
- A. Hulse and J. H. Taylor,??Discovery of a pulsar in a binary system? Astrophys. J. Lett. 195, L51 (1975).
- M. Will and H. W. Zaglauer, ?Gravitational radiation, close binary systems, and the Brans-Dicke theory of gravity,? Astrophys. J 346, 366 (1989).
- Wang, ?Massive scalar counterpart of gravitational waves in scalarized neutron star binaries,? Eur. Phys. J. C 77, 641 (2017).
- Damour and G. Esposito-Farese, ?Gravitational wave versus binary - pulsar tests of strong field gravity,? Phys. Rev. D 58, 042001 (1998).
- M. Eardley, ?Observable effects of a scalar gravitational field in a binary pulsar,? Astrophys. J. Lett. 196, L59 (1975).
- Damour and G. Esposito-Farese, ?Testing gravity to second postNewtonian order: A Field theory approach,? Phys. Rev. D 53, 5541 (1996).
- Mirshekari and C. M. Will, ?Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order,? Phys. Rev. D 87, no. 8, 084070 (2013).
- Michele Maggiore, ?Gravitational Waves Volume 1: Thoery and Experiments? Oxford University Press, London, England (2008).
- Wang, ?GRAVITON MASS GENERATION IN IN-SPIRALING DNS,? Int. J Adv. Res., 5, 608 (2017).
- Khoury and A. Weltman, ?Chameleon cosmology,? Phys. Rev. D 69, 044026 (2004).
- Damour, G. W. Gibbons and C. Gundlach, ?Dark Matter, Time Varying G, and a Dilaton Field,? Phys. Rev. Lett. 64, 123 (1990).
- M. Will, ?Theory and Experiment in Gravitational Physics,? Cambridge University Press, Cambridge, England (1993).
- Alsing, E. Berti, C. M. Will and H. Zaglauer, ?Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity,? Phys. Rev. D 85, 064041 (2012).
- V. Wagoner, ?Scalar tensor theory and gravitational waves,? Phys. Rev. D 1, 3209 (1970).
- Wang, ?Gravitational Higgs Mechanism in Inspiraling Scalarized NS-WD Binary,? Int. J Astron. Astronphys. 7, 202 (2017).
- E. Peierls, ?The Commutation Laws of Relativistic Field Theory,? Proc. Roy. Soc. A214, 143 (1952).
- Hiida and H. Okamura, ?Gauge transformation and gravitational potentials,? Prog. Theor. Phys. 47, 1743 (1972).
- M. Barker and R. F. O?Connell, ?Gravitational Two-Body Problem with Arbitrary Masses, Spins, and Quadrupole Moments,? Phys. Rev. D 12, 329 (1975).
- Asada and T. Futamase, ?Post-Newtonian approximation: Its Foundation and applications,? Prog. Theor. Phys. Suppl. 128, 123 (1997).
- Futamase and Y. Itoh, ?The post-Newtonian approximation for relativistic compact binaries,? Living Rev. Rel. 10, 2 (2007).
- D. Goldberger and I. Z. Rothstein, ?An Effective field theory of gravity for extended objects,? Phys. Rev. D 73, 104029 (2006).
- F. Donoghue, ?General relativity as an effective field theory: The leading quantum corrections,? Phys. Rev. D. 50, 3874 (1994).
- F. Donoghue, ?Leading quantum correction to the Newtonian potential,? Phys. Rev. Lett. 72, 2996 (1994).
- Modanese, ?Potential energy in quantum gravity,? Nucl. Phys. B 434, 697 (1995).
- J. Muzinich and S. Vokos, ?Long range forces in quantum gravity,? Phys. Rev. D 52, 3472 (1995).
- A. R. Dalvit and F. D. Mazzitelli, ?Running coupling constants, Newtonian potential and nonlocalities in the effective action,? Phys. Rev. D 50, 1001 (1994).
- W. Hamber and S. Liu, ?On the quantum corrections to the Newtonian potential,? Phys. Lett. B 357, 51 (1995).
- A. Kazakov, ?On the notion of potential in quantum gravity,? Phys. Rev. D 63, 044004 (2001).
- B. Khriplovich and G. G. Kirilin, ?Quantum power correction to the Newton law,? J. Exp. Theor. Phys. 95, no. 6, 981 (2002) [Zh. Eksp. Teor. Fiz. 122, no. 6, 1139 (2002)].
- E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, ?Quantum gravitational corrections to the nonrelativistic scattering potential of two masses,? Phys. Rev. D 67, 084033 (2003) Erratum: [Phys. Rev. D 71, 069903 (2005)].
- H. Ford, M. P. Hertzberg and J. Karouby, ?Quantum Gravitational Force Between Polarizable Objects,? Phys. Rev. Lett. 116, no. 15, 151301 (2016).
- S. Stelle, ?Classical Gravity with Higher Derivatives,? Gen. Rel. Grav. 9, 353 (1978).
- D. Faddeev and V. N. Popov, ?Feynman Diagrams for the Yang-Mills Field,? Phys. Lett. 25B, 29 (1967).
- S. Fradkin and I. V. Tyutin, ?S matrix for Yang-Mills and gravitational fields,? Phys. Rev. D 2, 2841 (1970).
- M. Capper, G. Leibbrandt and M. Ramon Medrano, ?Calculation of the graviton selfenergy using dimensional regularization? Phys. Rev. D 8, 4320 (1973).
- E. J. Bjerrum-Bohr, ?Leading quantum gravitational corrections to scalar QED,? Phys. Rev. D 66, 084023 (2002).
- ?t Hooft & M. Veltman, Annales de L?Institut Henri Poincare Section (A) Physique Theorique, 20, 69 (1974).
- H. Goroff and A. Sagnotti, ?The Ultraviolet Behavior of Einstein Gravity,? Nucl. Phys. B 266, 709 (1986).
- Wang, ?Gravitationally Potential of Scalarized Neutron Star Binaries in a Covariant Quantization Treatment,? Int. JAdv. Rev. 7, 510 (2009).
[J. Wang. (2019); REVIEW FOR QUANTUM EFFECTS ON GRAVITATIONALLY BOUND NEUTRON STAR BINARIES. Int. J. of Adv. Res. 7 (May). 693-717] (ISSN 2320-5407). www.journalijar.com