20Jan 2017

HEALTH EFFECTS OF LOW LEVEL IONIZING RADIATION COMPARED TO ESTIMATED UV INDEX IN SHARM EL-SHEIKH, EGYPT.

  • Assistant Prof. of Applied Statistic in Radiation Safety Department, Nuclear and Radiological Regulatory Authority, Cairo, Egypt.
  • Lecturer in Radiation Safety Department, Nuclear and Radiological Regulatory Authority, Cairo, Egypt.
  • Assistant Prof. of Safety and Prevention of Oncology in Radiation protection Department, Nuclear and Radiological Regulatory Authority, Cairo, Egypt.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Background: The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earth’s surface and depletion of ozone in the stratosphere. However, Ultraviolet (UV) radiation is a well-known physical hazard responsible for photoaging, photoallergic, and phototoxic reactions as well as carcinogenesis. On the other side, ionizing radiation is known as one of the detrimental factors in the work environment that can cause serious, irreversible and irreparable damages in professional radiation workers, but the effects of low doses on human health has not been completely known. The Aim: The study clarifies the late and low level effects of ionizing radiation on health and recognizes the adverse effects of excessive solar radiation on skin, eyes and the immune system. It also outlines new approaches on how to improve the effectiveness of the UVI as a public awareness tool toward encouraging sun protection behavior aiming to reach a simplified estimation method and accurate predictive results for daily clear sky global solar radiation (H) and daily maximum ultraviolet index (UVImax). Methods: A simplified estimated model and accurate prediction results of UVImax are reached in this work. The linear multiple- regression model is used to forecast the UVImax for state of Sharm El-Sheikh. The precision of the developed forecasting model of daily UVImax is based on maximum temperature and accurate prediction results of daily H. The linear multiple- regression empirical model for estimating daily global solar radiation is based on three -predictor variables and one response variable. Results: The predictor variables of the daily global radiation developed model are different from predictors of other existing models. The developed model is considered as a simplified statistical approach because it depends on two constant predictors and one changeable predictor. It shows that the predicted global solar radiation overlaps the measured global solar radiation in all months of the year. The UVI refers to the daily maximum effective irradiance and serves as an indicator of the impact of UV-radiation on erythema (sunburn). It was developed as a tool to conceptualize the amount of harmful radiation and to encourage the general public to use sun protection, and it is recommended to be integrated with broader public health approaches. By comparing to late and low level effects of ionizing radiation, there are four types of delayed radiation effects: somatic, genetic, teratogenic, and transgenerational. The current radioprotection guidelines state that all exposures to radiation should be avoided if possible and that exposure should be kept as low as is reasonably achievable.


  1. Adhikari, K.R., Bhattarai, B.K., and Gurung S. (2013): Estimation of Global Solar Radiation for Four Selected Sites in Nepal Using Sunshine Hours, Temperature and Relative Humidity. JPEE, 1:1-9. http://dx.doi.org/10.4236/jpee.2013.13003.
  2. Allinson, S., Asmuss, M., Baldermann, C., Bentzen, J., Buller, D., Gerber, N., Green, A.C., Greinert, R., Kimlin, M., Kunrath, J., Matthes, R., Pölzl-Viol, C., Rehfuess, E., Rossmann, C., Schüz, N., Sinclair, C., Deventer, E.V., Webb, A., Weiss, W., and Ziegelberger, G.(2012): Validity and use of the UV index: report from the UVI working group, SchlossHohenkammer, Germany, 5-7, Health Phys.,103(3): 301-306.
  3. Augustine, C. and Nnabuchi, M.N. (2009): Empirical Models for the Correlation of Global Solar Radiation with Meteorological Data for Enugu, Nigeria, PJST, 10(1): 693-700. http://www.akamaiuniversity.us/PJST.htm.
  4. Authors on behalf of ICRP., Stewart, F.A., Akleyev, A.V., Hauer-Jensen, M., Hendry, J.H., Kleiman, N.J., Macvittie, T.J., Aleman, B.M., Edgar, A.B., Mabuchi, K., Muirhead, C.R., Shore, R.E., and Wallace, W.H. (2012): ICRP publication 118: ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in a Radiation Protection Context. Ann ICRP., 41(1-2):1–322. doi: 10.1016/j.icrp.2012.02.001.
  5. Börner, F.U., Schütz, H., and Wiedemann, P. (2010): The influence of the UV Index on attitudes toward sun exposure in the German population. J Cancer Ed., 25(4):643-649.
  6. Bulliard, J.L. and Reeder, A. (2001): Getting the message across: Sun protection information in media weather reports in New Zealand, N Z Med J.,114(1126):67-70
  7. Calabrese, E.J., Dhawan, G., and Kapoor, R. (2014): Use of X-rays to treat shoulder tendonitis/bursitis: a historical assessment. Arch Toxicol., 88(8):1503–17. doi.org/10.1007/s00204-014-1295-6. PubMed PMID: 24954447.
  8. Corredor, L.M.(2013): Estimation of Solar Radiation Incident on Horizontal and Tilted Surfaces For 7 Colombian Zones. IJER, 2(5): 362-366.
  9. Dennis, L.K., Vanbeek, M.J., Beane Freeman, L.E., Smith, B.J., Dawson, D.V., and Coughlin, J.A.(2008): Sunburns and risk of cutaneous melanoma: Does age matter? A comprehensive meta-analysis. Ann Epidemiol., 18(8):614-27. doi: 10.1016/j.annepidem.2008.04.006.
  10. Duffie, J.A. and Beckman, W.A. (2013): Solar Engineering of Thermal Processing, Fourth Edition. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. pp. 1-910.
  11. Elgazzar, A.H. and Kazem, N. (2015): Biological effects of ionizing radiation the pathophysiologic basis of nuclear medicine. Springer. pp. 715-726.
  12. Falayi, E.O., Adepitan, J.O. and Rabiu A.B.(2008): Empirical models for the correlation of global solar radiation with meteorological data for Iseyin, Nigeria. Int. J. Phys. Sci., 3(9): 210-216.
  13. Fliedner, T.M., Graessle, D.H., Meineke, V. and Feinendegen, L.E.(2012): Hemopoietic response to low dose-rates of ionizing radiation shows stem cell tolerance and adaptation. Dose-Response, 10(4):12-014. http://dx.doi.org/10.2203/dose-response.12-014.Feinendegen
  14. Gallagher, R.P., Lee, T.K., Bajdik, C.D. andBorugian, M.(2010):Ultraviolet radiation.Chronic Dis Can. 29 Suppl 1:51-68.
  15. Garland, C.F., Mohr, S.B., Gorham, E.D., Grant, W.B. and Garland, F.C. (2006): Role of Ultraviolet B Irradiance and Vitamin D in Prevention of Ovarian Cancer. Am. J. Prev. Med., 31: 512-514
  16. Hall, E.J. and Giaccia, A. (2012): Radiobiology for the Radiologist. Kindle edition 7th ed. Philadelphia, PA: Lippincott, Williams &Wilkins.
  17. Habbib, E, A.(2011): Empirical Models for Solar Radiation Estimation by Some Weather Data for Baghdad City. Al- Mustansiriya J. Sci , 22(2): 177-184.
  18. Halliday, G.M., Byrne, S.N. and Damian, D.L.(2011): Ultraviolet A radiation: Its role in immunosuppression and carcinogenesis. SeminCutan Med Surg., 30(4):214-21. doi: 10.1016/j.sder.2011.08.002.
  19. Hatfield, L.A., Hoffbeck, R.W., Alexander, B.H. and Carlin, B.P.(2009): Spatiotemporal and spatial threshold models for relating UV exposures and skin cancer in the central United States. Comput. Stat. Data Anal.,53(8): 3001-3015. doi: 1016/j.csda.2008.10.013
  20. Heydarheydari, S., Haghparast, A. and Eivazi, M.T.(2016):A Novel Biological Dosimetry Method for Monitoring Occupational Radiation Exposure in Diagnostic and Therapeutic Wards: From Radiation Dosimetry to Biological Effects.J Biomed Phys Eng., 6(1): 21–26. Published online 2016 Mar 1. PMCID: PMC4795325
  21. Hrycek, A., Czernecka-Mici?ska, A., K?uci?ski, P. and Badowski, R. (2002): Peripheral blood lymphocytes and selected serum interleukins in workers operating X-ray equipment. Toxicology letters, 132(2), 101-107. http://dx.doi.org/10.1016/S0378-4274(02)00030-9
  22. IARC (2012): IARC monographs on the evaluation of carcinogenic risks to humans. A review of human carcinogens: Radiation. Lyon, France: International Agency for Research on Cancer, WHO, Volume 100D, page 1-341.
  23. Ikehata, H. and Ono, T. (2011): The mechanisms of UV mutagenesis. J Radiat Res., 52(2):115-125.
  24. ICNIRP (International Commission on Non-Ionizing Radiation Protection) (1995): Global Solar UV Index VA joint recommendation of the World Health Organization, World Meteorological Organization, United Nations Environment Programme and the International Commission on Non-Ionizing Radiation Protection. Oberschleißheim, ISBN 3-9804789-0-4.
  25. Italia, N. and Rehfuess, E. (2012): Is the Global Solar UV Index an effective instrument for promoting sun protection? A systematic review. Health Educ Res., 27(2): 200-213.
  26. Ituen, E.E., Esen, N.U., Nwokolo, S.C. and Udo EG. (2012): Prediction of global solar radiation using relative humidity, maximum temperature and sunshine hours in Uyo, in the Niger Delta Region, Pelagia Research Library, Nigeria Advances in Applied Science Research., 3 (4):1923-1937.
  27. Joiner, M. and van der Kogel, A. (2009): Basic Clinical Radiobiology. In: Dörr W. (ed): Biological response modifiers: normal tissue. 4th London, England: Edward Arnold. pp. 301-316.
  28. Juzeniene, A., Grigalavicius, M., Baturaite, Z. and Moan, J. (2014): Minimal and maximal incidence rates of skin cancer in Caucasians estimated by use of sigmoidal UV dose-incidence curves. Int. J. Hyg. Env. Health, 217(8): 839-844.
  29. Kadhim, M., Salomaa, S., Wright, E., Hildebrandt, G., Belyakov, O.V., Prise, K.M., Little and M.P. (2013): Non-targeted effects of ionising radiation--implications for low dose risk. Mutat Res., 752:84–98.
  30. Kasai, H., Allen, J.T., Mason, R.M., Kamimura, T. and Zhang Z. (2005): TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res., 6:56.
  31. Kelly, D., Theodoratou, E., Farrington, S.M., Fraser, R., Campbell, H., Dunlop, M.G. and Zgaga. L. (2016): The contributions of adjusted ambient ultraviolet B radiation at place of residence and other determinants to serum 25-hydroxyvitamin D concentrations. Brit.J. Derm.,174: 1068-1078.
  32. Khalil, S.A. and Fathy, A.M. (2008): An Empirical Method for Estimating Global Solar Radiation over Egypt. ActaPolytechnica, 48(5): 48-53.
  33. Kiedron, P., Stierle, S. and Lantz K. (2007):Instantaneous UV Index and Daily UV Dose Calculations, NOAA-EPA Brewer Network. 1-5;esrl.noaa.gov/gmd/grad/neubrew/docs/UVindex.pdf.
  34. Klucinski, P., Mazur, B., Sedek, L., Aptekorz, M., Cieslik, P., Hrycek, A.H. and Martirosian, G. (2014): Assessment of selected B cells populations in the workers of X-ray departments. Int J Occup Med Environ Health, 27(3):467–73. doi.org/10.2478/s13382-014-0242-3. PubMed PMID: 24952144.
  35. Lim, H.S., Roychoudhuri, R., Peto, J., Schwartz, G., Baade, P. and Moller H. (2006): Cancer survival is dependent on season of diagnosis and sunlight exposure. Int. J. Cancer, 119(7):1530-1536.
  36. Martínez, A., Coleman, M., Romero-Talamás, C.A. andFrias, S. (2010): An assessment of immediate DNA damage to occupationally exposed workers to low dose ionizing radiation by using the comet assay.Rev Invest Clin., 62(1):23-30.
  37. Marwal, V.K., Sengar, R.C., Sengar, N., Mahawar, S. and Dashora, P.A (2012): comparative study of correlation functions for estimation of monthly mean daily global solar radiation for Jaipur, Rajasthan (India), Indian J. Sci. Technol, 5(5): 2729-2732.
  38. Medugu, D.W. and Yakubu, D.(2011): Estimation of mean monthly global solar radiation in Yola–Nigeria using angstrom model, Adv. Appl. Sci. Res., 2(2):414-421.
  39. Mettler, F. A.(2012): Medical effects and risks of exposure to ionising radiation. J Radiol Prot., 32:N9–N13.
  40. Miller, A.C.(2007): Depleted Uranium: Properties, Uses, and Health Consequences. Boca Raton, FL: CRC Press/Taylor & Francis.
  41. Miller, A.C., Satyamitra, M. and Kulkarni, S. (in press): \"Late and Low Level Effects of Ionizing Radiation\", Textbook of Military Medicine, Bender Press, Washington, DC [in press].
  42. Muirhead, C., O’Hagan, J., Haylock, R., Phillipson, M., Willcock, T., Berridge, G. and Zhang, W. (2009): Mortality and cancer incidence following occupational radiation exposure: Third analysis of the National Registry for Radiation Workers. BJC,100(1): 206-212. http://dx.doi.org/10.1038/bjc.6604825
  43. Muzathik, A.M., Nik, W.B.W., Ibrahim, M.Z., Samo, K.B., Sopian, K. and Alghoul, M.A. (2011): Daily Global Solar Radiation Estimate Based on Sunshine Hours, IJMME, 6(1):75-80.
  44. NASA Surface meteorology and Solar Energy–Choices (2016): Atmospheric science data center, parameter https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi.
  45. O’Sullivan, B. and Levin, W. (2003): Late radiation-related fibrosis: pathogenesis, manifestations, and current management. SeminRadiatOncol.,13(3): 274–289.
  46. Okundamiya, M.S. and Nzeako, A.N.(2011): Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria, Journal of Control Science and Engineering 2011: 1-7.
  47. Ossetrova, N.I., Sandgren, D.J., Gallego, S. and Blakely, W.F. (2010): Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. Health phys., 98(2): 204-208. http://dx.doi.org/10.1097/HP.0b013e3181abaabf
  48. Ridley, A.J., Whiteside, J.R., McMillan, T.J. and Allinson. S.L. (2009): Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol., 85: 177-195.
  49. Rivas, M., Rojas, E., Araya, M.C. and Calaf, G.M.(2015): Ultraviolet light exposure, skin cancer risk and vitamin D production. Oncol Lett., 10(4): 2259–2264.
  50. Roguin, A., Goldstein, J. and Bar O. (2012): Brain tumours among interventional cardiologists: A cause for alarm. Report of four new cases from two cities and a review of the literature. Euro Intervention, 7(9): 1081-1086. http://dx.doi.org/10.4244/EIJV7I9A172
  51. Sabatier, L., Martin, M., Crechet, F., Pinton, P. and Dutrillaux, B. (1992): Chromosomal anomalies in radiation-induced fibrosis in the pig. Mutat Res., 284(2): 257–263.
  52. Schmitz-Feuerhake, I., Busby, C. and Pflugbeil, S.(2016): Genetic radiation risks: a neglected topic in the low dose debate.Environ Health Toxicol, 31:e2016001, 13 pages. http://dx.doi.org/10.5620/eht.e2016001
  53. Shafiee, M., Hoseinnezhad, E., Vafapour, H., Borzoueisileh, S., Ghorbani, M. andRashidfar, R. (2016): Hematological Findings in Medical Professionals Involved at Intraoperative Fluoroscopy.Glob J Health Sci., 8(12):232-238. doi: 10.5539/gjhs.v8n12p232.
  54. Sivamadhavi, V. and Selvaraj, R.S.(2012): Prediction of Monthly Mean Daily Global Solar Radiation Using Artificial Neural Network, Earth Syst. Sci.,121(6):1501–1510.
  55. Seong, K.M., Seo, S., Lee, D., Kim, M.J., Lee, S.S., Park, S. andJin, Y.W. (2016):Is the Linear No-Threshold Dose-Response Paradigm Still Necessary for the Assessment of Health Effects of Low Dose Radiation?J Korean Med Sci., 31 (Suppl 1):S10-S23. doi: 10.3346/jkms.2016.31.S1.S10. Epub 2016 Jan 28.
  56. Stroian, G., Martens, C., Souhami, L., Collins, D.L. and Seuntjens, J. (2008): Local correlation between monte-carlo dose and radiationinduced fibrosis in lung cancer patients. Int J RadiatOncolBiol Phys., 70(3): 921–930.
  57. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)(2012): Biological mechanisms of radiation actions at low doses: A white paper to guide the Scientific Committee’s future programme of work, 1-35. (www.unscear.org).
  58. Venneri, L., Rossi, F., Botto, N., Andreassi, M.G., Salcone, N., Emad, A., Lazzeri, M.,Gori, C., Vano, E. and Picano, E.(2009): Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: Insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. AHJ,157(1), 118-124. http://dx.doi.org/10.1016/j.ahj.2008.08.009
  59. Weather2travel–climate guides, Egypt climate and weather, weather2travel.com/climate-guides/.
  60. Wester, U. and Paulsson, L.E. (2000): The influence of a UV index on the attitudes of a Swedish population towards sun exposure. Radiat Protect Dosim.,91: 232-324.
  61. WHO(2002): Global Solar UV Index: A practical guide; A joint recommendation of World Health Organization, World Meteorological Organization, United Nations Environment Programme and the International Commission on Non-Ionizing Radiation Protection. Geneva: World Health Organization.
  62. Wiegant, E., van Geffen, J., van Weele, M., van der, A.R. and Houweling, S. (2016): Improving satellite based estimations of UV index and dose and first assessment of UV in a world-avoided. Utrecht University, Master Thesis, KNMI Scientific Report WR-2016-01. 1-65.http://bibliotheek.knmi.nl/knmipubWR/WR2016-01.pdf.
  63. Yang, F.E., Vaida, F., Ignacio, L., Houghton, A., Nauityal, J., Halpern, H., Sutton, H. and Vijayakumar, S. (1995): Analysis of weekly complete blood counts in patients receiving standard fractionated partial body radiation therapy. Int J RadiatOncolBiol Phys., 33(3): 617-617. http://dx.doi.org/10.1016/ 0360-3016(95)00255-W
  64. Zuba, E.B., Francuzik, W., Malicki, P., Osmola-Ma?kowska, A. andJenerowicz, D. (2016): Knowledge about Ultraviolet Radiation Hazards and Tanning Behavior of Cosmetology and Medical Students.ActaDermatovenerol Croat., 24(1):73-7.

[El- ShanshouryG, El- Shanshoury H and Abaza A. (2017); HEALTH EFFECTS OF LOW LEVEL IONIZING RADIATION COMPARED TO ESTIMATED UV INDEX IN SHARM EL-SHEIKH, EGYPT. Int. J. of Adv. Res. 5 (1). 610-624] (ISSN 2320-5407). www.journalijar.com


Abaza A
Assistant Prof. of Safety and Prevention of Oncology in Radiation protection Department, Nuclear and Radiological Regulatory Authority, Cairo, Egypt.

DOI:


Article DOI: 10.21474/IJAR01/2789       DOI URL: http://dx.doi.org/10.21474/IJAR01/2789


Share this article