18Feb 2017

THE EFFECT OF ALKALOIDS, SAPONINSAND THYMOQUINONE OF NIGELLA SATIVA SEEDS ON BIOFILM PRODUCTION, MOTILITY, OUTER MEMBRANE PROTEINS AND LIPOPOLYSACCHARIDE OF SOME BACTERIA.

  • Taif University, Faculty of pharmacy, Department of microbiology, Taif, Saudi Arabia.
  • Taif University, Faculty of Science, Department of Biology , Taif, Saudi Arabia.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Alkaloids, saponinsand thymoquinone ofNigella sativaare active against both Gram-positive and Gram-negative bacteria. Subinhibitory concentrations of theseconstituentswere tested for their effect on biofilm production, motility and the expression of the proteins and the lipopolysaccharides of the outer membrane of Gram-negative bacteria. While all the three tested constituents reduced the biofilm formation byE. coli, only saponins and alkaloids reducedthe biofilm formation inK. pneumoniae and Sal. Typhimurium. Nonetheless, alkaloids, saponinsand thymoquinone, enhanced the biofilm formation in P. aeruginosa and Sh. flexneri. On the other hand,thymoquinone inhibited the motility of Escherichia coli, P. aeruginosa and Sal. Typhimurium. There were changes in the level of expression of seven and three outer membrane proteins ofE. coli and P. aeruginosa,respectively. Amongst these changes in E. coli,the amounts of OmpF apparently decreased and those ofOmpA increased. Also, three outer membrane proteins of P. aeruginosa were affected by the phytochemicals includingOprF. The expression of the latter was increased by alkaloids. Electron microscopy revealed some morphological changes inS. aureus and P. aeruginosa. It may be concluded that thymoquinone, alkaloids and saponins affect several pathogenesis mechanisms in both Gram-positive and Gram-negative bacteria.


  1. Sayed MD. Traditional medicine in health care, J.?Ethnopharmacol.?1980;2:19?22.
  2. Randhawa MA, Alenazi SA (2016) Neuropsychiatric Effects of Nigella sativa (Black Seed) ? A Review. AlternIntegr Med 5: 209.
  3. Hajra, N. (2011). Nigella sativa: the miraculous herb. Pakistan Journal of Biochemistry & Molecular Biology, 44(1), 44-48.
  4. Nickavar B, Mojab F, Javidnia K, Amoli MA. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Z Naturforsch C. 2003;58(9?10):629?631
  5. Ali BH and Blunden G (2003). Pharmacological and toxicological properties of Nigella sativa. Phytother. Res., 17: 299-304.
  6. Assi, M. A., Noor, M. H. M., Bachek, N. F., Ahmad, H., Haron, A. W., Yusoff, M. S. M., &Rajion, M. A. The Various Effects of Nigella Sativa on Multiple Body Systems in Human and Animals. PJSRR (2016) 2(3): 1-19.
  7. Salem ML, Alenzi FQ, Attia WY. Thymoquinone, the active ingredient of Nigella sativa seeds, enhances survival and activity of antigen-specific CD8-positive T cells in vitro. Br J Biomed Sci. 2011;68(3):131?137
  8. Pichette A, Marzouk B, Legault J. Antioxidant, anti-inflammatory, anticancer and antibacterial ctivities of extracts from nigella sativa (black cumin) plant parts. J Food Biochem. 2012;36(5):539?546
  9. Padhye S, Banerjee S, Ahmad A, Mohammad R, Sarkar FH. From here to eternity-the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. Cancer Ther. 2008;6:495?510
  10. Kumara SSM and Huat BT (2001). Extraction, isolation and characterization of anti-tumor principle, alpha-hedrin, from the seeds of Nigella sativa. Planta Med., 67: 29-32.
  11. EmanHalawani (2009). Antibacterial Activity of Thymoquinone and Thymohydroquinone of
  12. Nigella sativa L. and Their Interaction with Some Antibiotics. Adva in Biol Res 3 (5-6): 148-152,
  13. Bakathir HA, Abbas NA. Detection of the antibacterial effect of Nigella sativa ground seeds with water. Afr J TraditComplAltern Med. 2011;8(2):159?164.
  14. Suthar MP Patel PN Shah TG, Patel RK (2010). In vitro Screening of Nigella sativa Seeds for antifungal activity. International J. Pharmaceutical Appl. Sci., 1:84-91.
  15. Haloci E, Manfredini S, Toska V, Vertuani S, Ziosi P, Topi I, Kolani H (2012). Antibacterial and antifungal activity assessment of Nigella Sativa essential oils. World Academy Sci., Engin.Technol., 66: 1198-1200.
  16. Shohayeb, M., &Halawani, E. (2012). Comparative antimicrobial activity of some active constituents of N. sativa L.?World ApplSci J,?20, 182-189.
  17. Mohamed AM, Metwally NM, Mahmoud SS. Nigella sativa seeds against Schistosomamansoni different stages. MemInstOswaldo Cruz. 2005;100(2):205?211.
  18. Burits, M., &Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil.?Phytotherapy Research,?14(5), 323-328.
  19. Mathur ML, Gaur J, Sharma R, Haldiya KR. Antidiabetic properties spice plant Nigella sativa. Journal of Endocrinology and Metabolism 2011;1:1-8
  20. Forouzanfar, F., Bazzaz, B. S. F., &Hosseinzadeh, H. (2014). Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects.?Iranian journal of basic medical sciences,?17(12), 929.
  21. Monika T, Sasikala P, VijayaBhaskara Reddy M. A investigational of antibacterial activities of?Nigella sativa?on mastaitis in dairy crossbred cows.?Int J Adv Technical Res.?2013;3:263?272
  22. Bakathir, H. A., & Abbas, N. A. (2011). Detection of the antibacterial effect of nigella sativa ground seedswith water.?African Journal of Traditional, Complementary and Alternative Medicines,?8(2).
  23. Hanafy, M. S. M., &Hatem, M. E. (1991). Studies on the antimicrobial activity of Nigella sativa seed (black cumin).?Journal of Ethnopharmacology,?34(2-3), 275-278.
  24. Hosseinzadeh H, FazlyBazzaz BS, MotevalyHaghi M. Antibacterial activity of total extracts and essential oil of?Nigella sativa?L. seeds in mice.?Pharmacol online.?2007;2:429?435.
  25. Zaidi, S. F. H., Yamada, K., Kadowaki, M., Usmanghani, K., & Sugiyama, T. (2009). Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori.?Journal of Ethnopharmacology,?121(2), 286-291.
  26. Salman MT, Khan RA, Shukla I (2008). Antimicrobial activity of Black Cumin seeds (Nigella sativa) against multi-Drug resistant strains of Coagulase negative Staphylococci. Hippocratic J. Unani Med., 3: 107-112.
  27. Morsi NM (2000). Antimicrobial effect of crude extracts of Nigella sativa on multiple antibiotic resistant bacteria. ActaMicrobiol. Polonica,49: 63-74.
  28. El-Kamali HH, Ahmed AH, Mohammed AS, Yahia AMM, El-Tayeb IH and Ali AA (1998). Antibacterial properties of essential oils from Nigella sativa, Cymbopogoncitratus leaves and Pulicariaundulata aerial parts. Fitotherapia, 69:77-78.
  29. Al-Jabre S, Al-Akloby OM, Al-Qurashi AR, Akhtar N, Al-Dossary A and Randhawa MA (2003). Thymoquinone, an active principle of Nigella sativa, inhibited Aspergillusniger. Pak. J. Med. Res., 42:102-104.
  30. Ara N, Choudhury SAR and Amin A (2005). In vitro antimicrobial of the volatile oil of Nigella sativa Linn seeds. Teacher Aassos. J., 18:109-112.
  31. Sitara U, Niazi I, Naseem J and Sultana N (2008). Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pak. J. Bot., 40: 409-414.
  32. Halawani E (2009). Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics. Advances Biol. Res., 3: 148-152
  33. Mohammed MJ, Mahmood MT and Yaseen JM (2009). Biological effect of saponins Isolated from Nigella sativa (seeds) on growth of some bacteria. Tikrit J. Pure Sci., 14: 30-33.
  34. Ismaeil AS (2011). Effect of black seed alkaloids against some pathogenic bacteria. Raf. J. Sci., 22: 9-16.
  35. Abo-Zeid, K., and Shohayeb, M. Evaluation of the biocidal activity of alkaloids, saponins and volatile oil extracted from Nigella sativa seeds against miracidia and cercariae of Schistosomamansoni. Int J Pharm Sci Invent, 4 :47-54
  36. Taskin MK, Caliskan OA, Anil H, Abou-Gazar H, Khan IA and Bedir E (2005). Triterpenesaponins from Nigella sativa L. Turk. J. Chem., 29: 561-569.
  37. Dadawal AI, Chauhan HC, Chandel BS, Ranaware P, PatelKhushboo SS, Rathod SPH, Shah NM and Kher HN (2010). Assessment of Echerichia coli isolates for in vitro biofilm production. Vet. World, 3: 364-366.
  38. Rashid HM and Kornberg A (2000). Inorganic polyphosphate is needed for swimming, swarming and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 79: 4885-4890.
  39. Hitchcock, PJ and Brown, TM (1983). Morphological heterogeneity among salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol., 154: 269-277.
  40. Tsai C and Frasch CE (1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem., 119: 115-11.
  41. Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, 227: 680-685.58- Korhonen TK, Lounatmaa K, Ramta H and Kuusi N (1980).Characterization oftype 1 pilli of Salmonella Typhimurium LT2. J. Bacteriol., 144: 800-805.
  42. .Wray, W., Boulikas, T., Wray, V. P., & Hancock, R. (1981). Silver staining of proteins in polyacrylamide gels.?Analytical biochemistry,?118(1), 197-203.
  43. Korhonen TK, Lounatmaa K, Ramta H and Kuusi N (1980).Characterization oftype 1 pilli of Salmonella Typhimurium LT2. J. Bacteriol., 144: 800-805.
  44. Kokare, C.R.; Chakraborty, S.; Khopade, A.N.; Mahadik, K.R. Biofilm: Importance and applications. Indian J. Biotechnol. 2009, 8, 159?168.
  45. Bjarnsholt T. (2013)The role of bacterial biofilms in chronic infections. APMIS Suppl.(136):1-51. doi: 10.1111/apm.12099.
  46. Koo, H.; Duarte, S.; Murata, R.M.; Scott-Anne, K.; Gregoire, S.; Watson, G.E.; Singh, A.P.; Vorsa, N. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res. 2010, 44, 116?126.
  47. Monte, J., Abreu, A. C., Borges, A., Sim?es, L. C., &Sim?es, M. (2014). Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms.?Pathogens,?3(2), 473-498.
  48. Packiavathy IASV, Agilandeswari P, Musthafa KS, KaruthaPandian S, Veera Ravi A. Antibiofilm and quorum sensing inhibitory potential of Cuminumcyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Research International. 2012;45(1):85-92.
  49. Niu C, Afre S, Gilbert ES. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Letters in Applied Microbiology. 2006;43(5):489-494.
  50. Chaieb K, Kouidhi B, Jrah H, Mahdouani K and Bakhrouf A (2011).? Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary and Alternative Med., 11:29-34.
  51. Borges, A., Abreu, A. C., Malheiro, J., Saavedra, M. J., &Sim?es, M. (2013). Biofilm prevention and control by dietary phytochemicals.?Microbial pathogens and strategies for combating them: science, technology and education. Formatex,?2, 32-41.
  52. O'May C and Tufenkji N (2011). The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl. Environ. Microbiol., 77:3061-3067.
  53. Dusane, D. H., Hosseinidoust, Z., Asadishad, B., &Tufenkji, N. (2014). Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli.?PloS one,?9(11), e112093.
  54. O'May, C., Ciobanu, A., Lam, H., &Tufenkji, N. (2012). Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa.?Biofouling,?28(10), 1063-1076.
  55. Borges, A., Abreu, A. C., Malheiro, J., Saavedra, M. J., &Sim?es, M. (2013). Biofilm prevention and control by dietary phytochemicals.?Microbial pathogens and strategies for combating them: science, technology and education. Formatex,?2, 32-41.
  56. Amaral, L, Schwarz U, and Lorian V (1986). Penicillin-binding proteins of filaments of Escherichia coli induced by low concentrations of nalidixic acid, oxalinic acid, novobiocin, nitrofurantoin. Drugs. Exp. Clin. Res. 12:653?656.
  57. Hamilton-Miller JMT, Shah S (1999). Disorganisation of cell division of methicillin-resistant Staphylococcus aureus by a component of tea (Camellia sinensis): a study by electron microscopy. FEMS Microbiol. Lett., 176:463?469.
  58. Stapleton PD, Shah S, Taylor PW (2005). Altered cell surface properties and decreased autolytic activity in methicillin-resistant Staphylococcus aureus by epicatechingallate; International Union of Microbiological Societies, San Francisco, USA.
  59. Darah I, Lim C L, NurulAili Z, Nor Afifah S and ShaidaFariza S (2011,): Effects of methanolic extract of a soft sponge, Haliclona sp. on bacterial cells: structural degeneration study. PharmacieGlobale (IJCP) 7:1-6
  60. Sherman P, Cockerill III F, Soni R, and Brunton J (1991). Outer membranes are competitive inhibitors of Escherichia coli 0157:H7 adherence to epithelial cells. Infect. Immun. 59:890-899.
  61. Bernardini ML, Sanna MG, Fontaine A, and Sansonetti PJ (1993). OmpC is involved in invasion of epithelial cells by Shigellaflexneri. Infect. Immun. 61:3625-3635.
  62. Krachler AM, Ham H, and Orth K (2011). Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by Gram-negative pathogens. Proc. Natl. Acad. Sci. USA, 108: 11614?11619.
  63. Goh EB, Yim G, Tsui W, Mcclure J, Surette MG (2002). Transcriptional modulation of bacterial gene expression by sub-inhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA, 99:1705-1730
  64. Santiago, C., Lim, K. H., Loh, H. S., & Ting, K. N. (2015). Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalyphawilkesiana.?BMC complementary and alternative medicine,?15(1), 1.
  65. Wong, F. C., Yong, A. L., Sim, K. M., Ong, H. C., & Chai, T. T. (2014). Proteomic Analysis of Bacterial Expression Profiles Following Exposure to Organic Solvent Flower Extract of Melastomacandidu m D Don (Melastomataceae).?Tropical Journal of Pharmaceutical Research,?13(7), 1085-1092.
  66. Molinaro, A., Newman, M.A., Lanzetta, R. and Parrilli, M. (2009). The structures of lipopolysaccharides from plant-associated gram-negative bacteria. Eur. J. Org. Chem., 34, 5887-5896 .
  67. Pier, GB (2007).Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol, 297: 277-295.
  68. Freudenberg MA, Merlin T, Gumenscheimer M, Kalis C, Landmann R, Galanos C (2001). Role of lipopolysaccharide susceptibility in the innate immune response to Salmonella Typhimurium infection: LPS, a primary target for recognition of Gram-negative bacteria. Microbes Infect., 3:1213-1222.
  69. Meredith, T.C. Aggarwal, P., Mamat, U., Lindner, B., and Woodard, R.W. (2006). Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem. Biol., 1, 33-42
  70. Laird MW, Kloser AW, Misra R. Assembly of LamB and OmpF in deep rough lipopolysaccharide mutants of Escherichia coli K-12. J Bacteriol 1994; 178: 2259?2264.
  71. Murray?GL,?Attridge?SR,?Morona?R.?2003.?Regulation of?Salmonella typhimurium?lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz.?Mol. Microbiol.?47:1395?1406.

[Mohamed Shohayeb and Eman Halawani. (2017); THE EFFECT OF ALKALOIDS, SAPONINSAND THYMOQUINONE OF NIGELLA SATIVA SEEDS ON BIOFILM PRODUCTION, MOTILITY, OUTER MEMBRANE PROTEINS AND LIPOPOLYSACCHARIDE OF SOME BACTERIA. Int. J. of Adv. Res. 5 (Feb). 562-571] (ISSN 2320-5407). www.journalijar.com


Eman Halawani
Taif University

DOI:


Article DOI: 10.21474/IJAR01/3186      
DOI URL: http://dx.doi.org/10.21474/IJAR01/3186