20Mar 2017

FACILE SYNTHESIZE OF GRAPHENE OXIDE BY MODIFIED HUMMER’S METHOD AND DEGRADATION OF METHYLENE BLUE DYE UNDER VISIBLE LIGHT IRRADIATION.

  • Department of Inorganic & Analytical Chemistry, Andhra University,Visakhapatnam, India -530003.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Graphene is a very huge and ultimate material for composite with metals, semiconductors and non metals in recent years, due to its has a unique atom-thick with two-dimensional (2D) structure, excellent physical properties like high conductivity and charge mobility, huge specific surface area, excellent mechanical, thermal and electrical properties. Thus, it has been regarded as an important component for functional materials, especially for developing a variety of catalysts and it has been considered widely as a prominent precursor and a starting material for the synthesis of this processable material. This work describes the synthesis of Graphene oxide (GO) by Modified Hummer’s method and characterization of GO by Ultra violet visible spectroscopy (UV-Vis), UV-visible diffuse reflectance spectroscopy (UV-DRS), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy dispersive spectroscopy (EDX) analysis. The results obtained from the characterization techniques mentioned above is also explained in detailed and evaluation of catalytic application to environmental remedies, such as water purification of degradation of methylene blue under visible light irradiation.


  1. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Bubonos, I. V. Grigorieva, A. A. Firsov, Science. 2004, 306, 666
  2. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.  V. Dubonos, A. A. Firsov, Nature. 2005, 438, 197
  3. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. USA. 2005, 102, 10451
  4. I. Katsnelson, K. S. Novoselov, A. K. Geim, Nat. Phys. 2006, 2, 620
  5. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. K. Geim, Nat. Phys. 2006, 2, 177
  6. K. Geim, Angew. Chem. 2011, 123, 7100; Angew. Chem. Int. Ed. 2011, 50, 6966
  7. S. Novoselov, Angew. Chem. 2011, 123, 7123; Angew. Chem. Int. Ed. 2011, 50, 6986
  8. H. C. Neto, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109
  9. N. Lau, W. Bao, J. Velasco, Mater. Today. 2012, 15, 238
  10. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132
  11. Chen, X. Guo, Small 2013, 9, 1144
  12. Huang, J. Liang, Y. Chen, Small 2012, 8, 1805
  13. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027
  14. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J. R. Gong, Adv. Mater. 2013, 25, 3820
  15. L, G. Zhao, X. Wang, Chin. Sci. Bull. 2012, 57, 1223
  16. Luo, S. Liu, L. Zhi, Small. 2012, 8, 630
  17. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, D. H. Min, Acc. Chem. Res. 2013,  46, 2211
  18. I. Paredes, S. Villar-Rodil, A. Martnez-Alonso, J. M. D. Tascn, Langmuir. 2008, 24, 10560
  19. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Commun. 2008, 146, 351–355
  20. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science. 2004, 306, 666–669
  21. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 2010,   22, 3906–3924
  22. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science.  2004, 306, 666–669
  23. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, Science.  2007, 315, 1379
  24. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff and L. Shi, Science.  2010, 328, 213–216
  25. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi andR. S. Ruoff, Nano Lett. 2010, 10, 1645–1651
  26. Lee, Changgu, Science 2008, 321 (385): 385– 388
  27. "2010 Nobel Physics Laureates", nobelprize.org
  28. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, M. R.; Geim, A. K. Science 2008,  320 (5881): 1308–1308
  29. Mater. Chem. A, 2014, 2, 4491
  30. Chem. Int. Ed. 2014, 53, 7720 – 7738
  31. Mattei, Tobias A. MD*; Rehman, Azeem A. BSNeurosurgery, 2014 - Volume 74 -  Issue 5 - p 499–516
  32. wikipedia.org
  33. Santosh K.Tiwari ,Vijay Kumar , Andrzej Huczko , ROraon , A. De Adhikari ,  C.  NayakCritical Reviews in Solid State and Materials Sciences 2016 41 (4), 257-317
  34. graphenea.com
  35. Paulchamy et al., J Nanomed Nanotechnol 2015, 6:1

[B. Lavakusa B. Sathish Mohan P.Durga Prasad, Neway Belachew and K.Basavaiah (2017); FACILE SYNTHESIZE OF GRAPHENE OXIDE BY MODIFIED HUMMER’S METHOD AND DEGRADATION OF METHYLENE BLUE DYE UNDER VISIBLE LIGHT IRRADIATION. Int. J. of Adv. Res. 5 (Mar). 405-412] (ISSN 2320-5407). www.journalijar.com


B.Lavakusa
Andhra University

DOI:


Article DOI: 10.21474/IJAR01/3526      
DOI URL: http://dx.doi.org/10.21474/IJAR01/3526