26Jul 2017

EFFECT OF CROWN MATERIAL, IMPLANT PLATFORM AND ABUTMENT DESIGN ON THE STRESS DISTRIBUTION AROUND IMPLANT-SUPPORTED DENTAL RESTORATIONS: A SYSTEMATIC REVIEW.

  • PhD student, Department of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, Egypt.
  • Department of Fixed Prosthodontics, Sana`a University, Sana`a, Yemen.
  • Professor, Department of Fixed Prosthodontics, Former Dean, Faculty of Oral and Dental Medicine, Cairo University, Egypt.
  • Professor, Department of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, Egypt.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

To evaluate the effect of implant platform/abutment design/ crown material combinations on the stress distribution around implant-supported dental restorations. A literature search was made in three databases including PubMed, Cochrane and Web of Science. Inclusion criteria were in vitro studies, switched implant platform versus regular implant platform, titanium implants, internal hex connection and stress values of bone. Two review authors independently screened the articles for inclusion. This was followed by handsearching in the reference lists of all eligible studies for additional studies. Results: the search resulted in 16 eligible studies concerning the effect of platform switching on peri-implant bone stress, however no papers were found studying the effect of different implant platform/ abutment design /crown material complexes on bone stress. From the included studies, platform switching concept can replace conventional platform designs to improve implant survival rate, provided it should be used within its indications.


  1. Adell R, Lekholm U, Rockler B, Br?nemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10(6):387-416.
  2. Mellal A, Wiskott HWA, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res. 2004;15(2):239-248.
  3. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent. 2006;26:9-17.
  4. Belser UC, Buser D, Hess D, Schmid B, Bernard JP LN. Aesthetic implant restorations in partially edentulous patients - a critical appraisal. Periodontol 2000. 17:132-150.
  5. Brodbeck U. The ZiReal Post: A new ceramic implant abutment. J Esthet Restor Dent. 2003;15(1):10-23.
  6. Truninger TC, Stawarczyk B, Leutert CR, Sailer TR, H?mmerle CHF, Sailer I. Bending moments of zirconia and titanium abutments with internal and external implant-abutment connections after aging and chewing simulation. Clin Oral Implants Res. 2012;23(1):12-18.
  7. Kim JS, Raigrodski AJ, Flinn BD, Rubenstein JE, Chung KH, Mancl LA. In vitro assessment of three types of zirconia implant abutments under static load. J Prosthet Dent. 2013;109(4):255-263.
  8. Stachowiak GB, Stachowiak GW. Fretting wear and friction behaviour of engineering ceramics. Wear. 1995;190(2):212-218.
  9. Sailer I, Sailer T, Stawarczyk B, Jung RE, H?mmerle CHF. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int J Oral Maxillofac Implants. 2009;24(5):850-858.
  10. Butz F, Heydecke G, Okutan M SJ. Survival rate, fracture strength and failure mode of ceramic implant abutments after chewing simulation. J Oral Rehabil. 2005;32(11):838-843.
  11. Gehrke P, Johannson D, Fischer C, Stawarczyk B, Beuer F. In Vitro Fatigue and Fracture Resistance of One- and Two-Piece CAD/CAM Zirconia Implant Abutments. Int J Oral Maxillofac Implant. 2015;30(3):546-554.
  12. Bijjargi S, Chowdhary R. Stress dissipation in the bone through various crown materials of dental implant restoration: a 2-D finite element analysis. J Investig Clin Dent. 2013;4(3):172-177.
  13. Sevimay M, Usumez A, Eskitascioglu G. The influence of various occlusal materials on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite-element study. J Biomed Mater Res - Part B Appl Biomater. 2005;73(1):140-147.
  14. Moher D, Liberati A, Tetzlaff J, Altman DG TPG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-341.
  15. Rasouli-Ghahroudi AA, Geramy A, Yaghobee S, Khorsand A, Yousefifakhr H, Rokn A SA. Evaluation of Platform Switching on Crestal Bone Stress in Tapered and Cylindrical Implants: A Finite Element Analysis. J Int Acad Periodontol. 2015;17(1):2-13.
  16. Cimen H YE. Analyzing the effects of the platform-switching procedure on stresses in the bone and implant-abutment complex by 3-dimensional fem analysis. J Oral Implant. 2012;38(1):21-26.
  17. Schrotenboer J, Tsao Y-P, Kinariwala V, Wang H-L. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol. 2008;79(11):2166-2172.
  18. Khurana P, Sharma A, Sodhi KK. Influence of fine threads and platform-switching on crestal bone stress around implant-a three-dimensional finite element analysis. J Oral Implant. 39(6):697-703.
  19. Canay S,Ak?a K. Biomechanical aspects of bone-level diameter shifting at implant-abutment interface. Implant Dent. 2009;18(3):239-248.
  20. Schrotenboer J, Tsao Y, Wang H. Effect of platform switching on implant crest bone stress: a finite element analysis. Implant Dent. 2009;18(3):260-269.
  21. Sahabi M, Adibrad M, Mirhashemi FS, Habibzadeh S. Biomechanical Effects of Platform Switching in Two Different Implant Systems : A Three-Dimensional Finite Element Analysis. J Dent. 2013;10(4):338-350.
  22. Aradya A, Kumar UK CR. Influence of different abutment diameter of implants on the peri-implant stress in the crestal bone: A three-dimensional finite element analysis--In vitro study. Indian J Dent Res. 2016;27(1):78-85.
  23. Canullo L, Pace F, Coelho P, Sciubba E VI. The influence of platform switching on the biomechanical aspects of the implant-abutment system. A three dimensional finite element study. Med Oral Patol Oral Cir Bucal. 2011;16(6):852-856.
  24. Bouazza-juanes K, Mart?nez-gonz?lez A, Peir? G, R?denas J. Effect of platform switching on the peri-implant bone : A finite element study. J Clin Exp Dent. 2015;7(4):e483-8.
  25. Segura-mori L, Gonzalez-gonzalez I, Dellanos-lanchares H, Sanchez-lasheras F, Ellacuria-echevarria J. Stress distribution in the transitional peri-implant bone in a single implant-supported prosthesis with platform-switching under different angulated loads. Odontology. 2017;105(1):68-75.
  26. Мураев АА, Иванов СЮ, Леонов СВ, et al. [Stress final element analysis at the abatement-implant-bone interface]. Stomatol (Mosk). 2016;7(903: 18-20.[Article in Russian; Abstract available in Russian from the publisher]).
  27. Tabata LF, Gon W, Antonio E, Sousa C De, Gomes A, Delben JA. Implant Platform Switching : Biomechanical Approach Using Two-Dimensional Finite Element Analysis. J Craniofac Surg. 2010;21(1):182-187.
  28. Wagenberg B, Froum SJ. Prospective study of 94 platform-switched implants observed from 1992 to 2006. Int J Periodontics Restorative Dent. 2010;30:9-17.
  29. Tarnow DP, Cho SC, Wallace SS. The Effect of Inter-Implant Distance on the Height of Inter-Implant Bone Crest. J Periodontol. 2000;71(4):546-549.
  30. Hagiwara Y. Does platform switching really prevent crestal bone loss around implants? Jpn Dent Sci Rev. 2010;46(2):122-131.
  31. Jung RE, Zembic A, Pjetursson BE, Zwahlen M, Thoma DS. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implant Res. 2012;23 Suppl 6:2-21.
  32. Happe A, K?rner G. Biologic Interfaces in Esthetic Dentistry. Part II: The Peri-implant / Restorative Interface. Eur J Esthet Dent. 2011;6(2):226-251.
  33. Chang C-L, Chen C-S, Hsu M-L. Biomechanical effect of platform switching in implant dentistry: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2010;25(2):295-304.
  34. Maeda Y, Miura J, Taki I, Sogo M. Biomechanical analysis on platform switching: Is there any biomechanical rationale? Clin Oral Implants Res. 2007;18(5):581-584.
  35. Tabata LF, Rocha EP, Bar?o VAR, Assun??o WG. Platform switching: biomechanical evaluation using three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2011;26(3):482-491.
  36. Pellizzer EP, Falc?n-Antenucci RM, de Carvalho PSP, Santiago JF, de Moraes SLD, de Carvalho BM. Photoelastic analysis of the influence of platform switching on stress distribution in implants. J Oral Implantol. 2010;36(6):419-424.
  37. Gurgel-Juarez NC, de Almeida EO, Rocha EP, Freitas AC Jr, Anchieta RB, de Vargas LC, Kina S FF. Regular and Platform Switching : Bone Stress Analysis Varying Implant Type. Int J Oral Maxillofac Implant. 2012;0:27-33.
  38. Zhou Y, Li Z, Wang Y. The Effect of Platform Switching on Stress in Peri-implant Bone in a Condition of Marginal Bone Resorption : A Three-Dimensional Finite Element Analysis. Int J Oral Maxillofac Implant. 2013;28(3):5-10.
  39. Romanos GE, Javed F. Platform switching minimises crestal bone loss around dental implants: Truth or myth? J Oral Rehabil. 2014;41(9):700-708.
  40. Mohammed Ibrahim M, Thulasingam C, Nasser KS, Balaji V, Rajakumar M RP. Evaluation of design parameters of dental implant shape, diameter and length on stress distribution: a finite element analysis. J Indian Prosthodont Soc. 11(3):165-171.
  41. Rismanchian M, Birang R, Shahmoradi M, Talebi H ZR. Developing a new dental implant design and comparing its biomechanical features with four designs. Dent Res J. 2010;7(2):70-75.
  42. Frost HM. A 2003 Update of Bone Physiology and Wolff ? s Law for Clinicians. Angle Orthod. 2004;74(1):3-15.
  43. Bratu EA, Tandlich M SL. A rough surface implant neck with microthreads reduces the amount of marginal bone loss: a prospective clinical study. Clin Oral Implant Res. 20(8):827-832.
  44. Lee DW, Choi YS, Park KH, Kim CS MI. Effect of microthread on the maintenance of marginal bone level a 3-year prospective study..pdf. Clin Oral Implant Res. 18(4):465-470.
  45. Zembic A, Sailer I, Jung RE, H?mmerle CHF. Randomized-controlled clinical trial of customized zirconia and titanium implant abutments for single-tooth implants in canine and posterior regions: 3-year results. Clin Oral Implants Res. 2009;20(8):802-808.

[Ahlam A. Othman, Hesham A. Katamish and Atef Shaker. (2017); EFFECT OF CROWN MATERIAL, IMPLANT PLATFORM AND ABUTMENT DESIGN ON THE STRESS DISTRIBUTION AROUND IMPLANT-SUPPORTED DENTAL RESTORATIONS: A SYSTEMATIC REVIEW. Int. J. of Adv. Res. 5 (Jul). 2822-2832] (ISSN 2320-5407). www.journalijar.com


Ahlam Abdulsalam Othman, Hesham Katamish, Atef Shaker
Ahlam A Othman, DDS, MSD,a Hesham A Katamish, DDs, MSD, PhD,b Atef Shaker, DDs, MSD, PhD b a Lecturer, Department of fixed prosthodontics, Sana`a University, Sana`a Yemen BDS, Sana`a University, Sana`a Yemen MSD Fixed Prosthodontics Department, Faculty of Oral and Dental Medicine Cairo University, Egypt. PhD student, Fixed Prosthodontics Department, Faculty of Oral and Dental Medicine Cairo University, Egypt.

DOI:


Article DOI: 10.21474/IJAR01/4887      
DOI URL: http://dx.doi.org/10.21474/IJAR01/4887