27Sep 2017

OBSERVATION AND GENETIC FOUNDATIONS OF THE BRAIN'S "AMBIGUITY RELIEF PROCESSES.

Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

This paper focuses on the brain?s clarity seeking process, what has been termed as Ambiguity relief process. ?Ambiguity relief? has four quantifiable clarity seeking processes each with a predictable set of genes and neurotransmitters working on three different parts of the brain. With observation of the genetic foundations of some brain disorders, it was discovered that there were parallels in the brain?s clarity processes. The hypothesis was that the Ambiguity Relief process was directly related to the sequence of taking action on ideas, projects or even buying decisions and this was further tested. Three models, Herrmann Brain Dominance Instrument by Ned Herrmann, Human Dynamics work by Sandra Segal and David Horn, and Temperament and Character work by C. Cloninger were studied in-depth and there was overwhelming evidence that there were consistencies in how people got clarity when faced with solving problems, completing ideas, and understanding new information that did not change regardless of the environment or behavior.


  1. 01Herrmann, N. (1996). The Whole Brain Business Book: Harnessing the Power of the Whole Brain Organization and the Whole Brain Individual.
  2. 02Seagal, S., & Horne, D. (1997). Human dynamics: A new framework for understanding people and realizing the potential in our organizations. Pegasus Communications.
  3. 03Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of general psychiatry, 50(12), 975-990.
  4. 04Takamura, N., Nakagawa, S., Masuda, T., Boku, S., Kato, A., Song, N., ... & Kusumi, I. (2014). The effect of dopamine on adult hippocampal neurogenesis.?Progress in Neuro-Psychopharmacology and Biological Psychiatry,?50, 116-124.
  5. 05Berumen, L. C., Rodr?guez, A., Miledi, R., & Garc?a-Alcocer, G. (2012). Serotonin receptors in hippocampus. The Scientific World Journal, 2012.
  6. 06Serotonin Link To Impulsivity, Decision-making, Confirmed. (n.d.). Retrieved July 16, 2017, from https://www.sciencedaily.com/releases/2008/06/080605150908.htm
  7. 07Abercrombie, E. D., Keller, R. W., & Zigmond, M. J. (1988). Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies.?Neuroscience,?27(3), 897-904.
  8. 08Purves, D. (1970, January 01). Acetylcholine. Retrieved July 16, 2017, from https://www.ncbi.nlm.nih.gov/books/NBK11143/
  9. 09Hasselmo, M. E. (2006, December). The Role of Acetylcholine in Learning and Memory. Retrieved July 16, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659740/
  10. 10Hasselmo, M. E., Linster, C., Patil, M., Ma, D., & Cekic, M. (1997). Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. Journal of neurophysiology, 77(6), 3326-3339.
  11. 11Serotonin Link To Impulsivity, Decision-making, Confirmed. (n.d.). Retrieved July 16, 2017, from https://www.sciencedaily.com/releases/2008/06/080605150908.htm
  12. 12DRD2 dopamine receptor D2 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved July 16, 2017, from https://www.ncbi.nlm.nih.gov/gene/1813
  13. 13DRD4 dopamine receptor D4 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved July 16, 2017, from https://www.ncbi.nlm.nih.gov/gene/1815
  14. 14HTR2C 5-hydroxytryptamine receptor 2C [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved July 16, 2017, from https://www.ncbi.nlm.nih.gov/gene/3358
  15. 15HTR6 5-hydroxytryptamine receptor 6 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved July 16, 2017, from https://www.ncbi.nlm.nih.gov/gene/3362
  16. 16Caspase Inhibitor-caspaseinhibitor.com. (n.d.). Retrieved July 16, 2017, from http://www.bing.com/cr?IG=53CC7A687590436CB8AA4F688EDC592A&CID=3388CD28A00A62F83B9CC7ECA10C635E&rd=1&h=vMa6KXZ3sLDPclbN9z1Dps6k4GPvhbRtB_nticlRTB8&v=1&r=http%3a%2f%2fwww.caspaseinhibitor.com%2f&p=DevEx,5044.1
  17. 17SPR gene - Genetics Home Reference. (n.d.). Retrieved July 16, 2017, from https://ghr.nlm.nih.gov/gene/SPR#normalfunction
  18. 18COMT gene - Genetics Home Reference. (n.d.). Retrieved July 16, 2017, from https://ghr.nlm.nih.gov/gene/COMT#conditions
  19. 19Ebner, N. C., Kamin, H., Diaz, V., Cohen, R. A., & MacDonald, K. (2014). Hormones as ?difference makers? in cognitive and socioemotional aging processes. Frontiers in psychology, 5.
  20. 20Symbol Report: CADM2. (n.d.). Retrieved July 16, 2017, from http://www.genenames.org/cgi-bin/gene_symbol_report?q=data%2Fhgnc_data.php&hgnc_id=29849
  21. 21CHRNA2 gene - Genetics Home Reference. (n.d.). Retrieved July 19, 2017, from https://ghr.nlm.nih.gov/gene/CHRNA2
  22. 22Clark, K. L., & Noudoost, B. (2014). The role of prefrontal catecholamines in attention and working memory. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986539/
  23. 23Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., ... & Perry, K. W. (2002). Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 27(5), 699-711.
  24. 24Moret, C., & Briley, M. (2011). The importance of norepinephrine in depression. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131098/
  25. 25Brem, S., Gr?nblatt, E., Drechsler, R., Riederer, P., & Walitza, S. (2014). The neurobiological link between OCD and ADHD. ADHD Attention Deficit and Hyperactivity Disorders, 6(3), 175-202.
  26. 26Gorina, A. S., Kolesnichenko, L. S., & Mikhnovich, V. I. (2011, November 09). Catecholamine metabolism in children with Asperger's and Kanner's syndromes. Retrieved July 19, 2017, from https://link.springer.com/article/10.1134/S1990750811040044
  27. 27Blum, K., Chen, A. L., Braverman, E. R., Comings, D. E., Chen, T. J., Arcuri, V., . . . Oscar-Berman, M. (2008, October). Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626918/
  28. 28Engert, V., & Pruessner, J. C. (2008, December). Dopaminergic and Noradrenergic Contributions to Functionality in ADHD: The Role of Methylphenidate. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701285/
  29. 29Montag, C., Jurkiewicz, M., & Reuter, M. (2012, May). The Role of the Catechol-O-Methyltransferase (COMT) Gene in Personality and Related Psychopathological Disorders. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345409/#R52
  30. 30SPR gene - Genetics Home Reference. (n.d.). Retrieved July 19, 2017, from https://ghr.nlm.nih.gov/gene/SPR#normalfunction
  31. 31Berumen, L. C., Rodr?guez, A., Miledi, R., & Garc?a-Alcocer, G. (2012). Serotonin Receptors in Hippocampus. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353568/
  32. 32Duchesne, B., & Monod, N. (2016). Structural properties of dendrite groups.?arXiv preprint arXiv:1610.08488.
  33. 33CHRNA4 gene - Genetics Home Reference. (n.d.). Retrieved July 19, 2017, from https://ghr.nlm.nih.gov/gene/CHRNA4
  34. 34Taylor, P. (1999, January 01). Synthesis, Storage and Release of Acetylcholine. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/books/NBK28051/
  35. 35Van, E. A., & Luiten, P. G. (1999, August). Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pubmed/10380240
  36. 36Purves, D. (1970, January 01). Acetylcholine. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/books/NBK11143/
  37. 37Deutsch, S. I., Urbano, M. R., Neumann, S. A., Burket, J. A., & Katz, E. (2010, May). Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions? Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pubmed/20190638
  38. 38McQuiston, A. R. (2014, August 29). Acetylcholine release and inhibitory interneuron activity in hippocampal CA1. Retrieved July 19, 2017, from http://journal.frontiersin.org/article/10.3389/fnsyn.2014.00020/full
  39. 39Hasselmo, M. E. (2006, December). The Role of Acetylcholine in Learning and Memory. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659740/
  40. 40DeepDiveAdmin, W. D. (n.d.). Alzheimer's, Memory, and Acetylcholine. Retrieved July 19, 2017, from http://www.psyweb.com/Documents/00000003.jsp
  41. 41Brem, S., Gr?nblatt, E., Drechsler, R., Riederer, P., & Walitza, S. (2014). The neurobiological link between OCD and ADHD. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148591/
  42. 42Quist, J. F., Barr, C. L., Schachar, R., Roberts, W., Malone, M., Tannock, R., ... & Kennedy, J. L. (2003). The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder.?Molecular psychiatry,?8(1), 98.
  43. 43Understanding Obsessive-Compulsive and Related Disorders. (n.d.). Retrieved July 19, 2017, from http://ocd.stanford.edu/about/understanding.html
  44. 44(n.d.). Retrieved July 19, 2017, from https://www.sciencedaily.com/releases/2008/06/080605150908.htm
  45. 45Curatolo, P., D'Agati, E., & Moavero, R. (2010). The neurobiological basis of ADHD.?Italian Journal of Pediatrics,?36(1), 79.
  46. 46Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., ... & Matsuzaki, H. (2010). Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.?Archives of general psychiatry,?67(1), 59-68.
  47. 47Lohoff, F. W. (2010, December). Overview of the Genetics of Major Depressive Disorder. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077049/
  48. 48Moret, C., & Briley, M. (2011). The importance of norepinephrine in depression. Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131098/
  49. 49McCulloch, K. A., Qi, Y. B., Takayanagi-Kiya, S., Jin, Y., & Cherra, S. J. (2017). Novel Mutations in Synaptic Transmission Genes Suppress Neuronal Hyperexcitation in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, g3-117.
  50. 50Study finds gene affecting thinking skills. (n.d.). Retrieved July 19, 2017, from https://www.umc.edu/News_and_Publications/Press_Release/2015-04-16-00_Study_finds_gene_affecting_thinking_skills.aspx
  51. 51CADM2 cell adhesion molecule 2 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved July 19, 2017, from https://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=full_report&list_uids=253559
  52. 52Ibrahim-Verbaas, C. A., Bressler, J., Debette, S., Schuur, M., Smith, A. V., Bis, J. C., ... & Chibnik, L. B. (2016). GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Molecular psychiatry, 21(2), 189-197.
  53. Bellugi, U., & St George, M. (2001). Journey from cognition to brain to gene. Perspectives from Williams Syndrome. USA: Massachusetts Institute.
  54. Bornstein, M. H., & Krasnegor, N. A. (Eds.). (2013). Stability and continuity in mental development: Behavioral and biological perspectives. Psychology Press.
  55. Ke, X., Sui, N., & Shen, D. (2001). PERCEPTUAL UNCONSCIOUS PROCESSING OF THE BRAIN. Acta Psychologica Sinica, 33(01), 88-93.
  56. KIM, M. S., CHO, S. S., KANG, K. W., HWANG, J. L., & Kwon, J. S. (2002). Electrophysiological correlates of personality dimensions measured by Temperament and Character Inventory. Psychiatry and clinical neurosciences, 56(6), 631-635.
  57. Paris, J. (2005). Neurobiological dimensional models of personality: A review of the models of Cloninger, Depue, and Siever. Journal of Personality Disorders, 19(2), 156-170.
  58. Sato, W., Kochiyama, T., Uono, S., Kubota, Y., Sawada, R., Yoshimura, S., & Toichi, M. (2015). The structural neural substrate of subjective happiness.?Scientific reports,?5.
  59. Tamminga, C. A., Stan, A. D., & Wagner, A. D. (2010). The hippocampal formation in schizophrenia. American Journal of Psychiatry, 167(10), 1178-1193.
  60. Udd?n, J., Folia, V., & Magnus Petersson, K. (2010). The neuropharmacology of implicit learning. Current neuropharmacology, 8(4), 367-381.
  61. Van der Zee, E. A., & Luiten, P. G. M. (1999). Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Progress in neurobiology, 58(5), 409-471.

[Carmazzi AF. (2017); OBSERVATION AND GENETIC FOUNDATIONS OF THE BRAIN'S "AMBIGUITY RELIEF PROCESSES. Int. J. of Adv. Res. 5 (Sep). 1129-1140] (ISSN 2320-5407). www.journalijar.com


Carmazzi AF


DOI:


Article DOI: 10.21474/IJAR01/5430      
DOI URL: http://dx.doi.org/10.21474/IJAR01/5430