24Sep 2017

OPTIMIZATION OF FERMENTATION CONDITIONS FOR THE ETHANOL PRODUCTION FROM SUGARCANE BAGASSE BY ZYMOMONAS MOBILIS USING RESPONSE SURFACE METHODOLOGY.

  • NUPEM, Nucleus in Ecology and Socio-environmental Development of Maca?- Federal University of Rio de Janeiro.
  • Laboratories of Bioprocess Development, Center of Technology ? School of Chemistry, Federal University of Rio de Janeiro.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The use of biomass as renewable sources of energy has increased industrial focus toward alternative fuel because of the depletion of fossil fuel reserves, the unstable panorama of the petrol prices, the increasing environmental and political pressures. The new concept of bioethanol corresponds to its production using raw cellulosic materials, such as sugarcane bagasse. The bacterium Zymomonas mobilis was shown to be extremely attractive for the ethanol second generation production from glucose of the cellulosic fraction, due to its high capacity to absorb this sugar, resulting in high ethanol productivity values. The aim of this work was to study the influence between the medium components: Yeast Extract, KH2PO4, (NH4)2SO4, MgS04.7H20 to optimize the fermentation conditions for the ethanol production from sugarcane bagasse by Z. mobilis. Initially, to make easier the accessibility of cellulases to the cellulose microfibrils, the bagasse was submitted to a pretreatment with diluted acid to fractionate and extract the hemicellulose component from the solid residue named cellulignin and then, this solid residue was pretreated using NaOH (4%) aiming at its partial delignification. Thereafter, the pretreated cellulignin underwent the action of a commercial cellulolytic preparation, allowing the conversion from cellulose to glucose. This enzymatic pretreatment occurred under temperature of 50?C for 12 hours, after which the temperature reduced to 30?C and we inoculated the system with cells of Z. mobilis. It has been used statistical experimental design to optimize the conditions of SSF, evaluating the medium components. The optimum conditions found were 12.5 g/L of Yeast Extract, 2.5 g/L of KH2PO4; 1.5 g/L of (NH4)2SO4; 1.5 g/L of MgS04.7H20, respectively; achieving 65.3 g/L of ethanol.


  1. Naik, N.; Goud, V.V.; Rout, P. K.; Dalai, A. K. Production of first and second generation biofuels: A comprehensive review. http://dx.doi.org/10.1016/j.rser.2009.10.003
  2. Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management 52: 858-875.
  3. Sarris, D.;Papanikoalaou, S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng. Life Sci. 2016, 16, 307-329. ??
  1. Knauf & Moniruzzaman, M. (2004) Lignocellulosic Biomass Processing: A Perspective. International Sugar Journal 106: 12-23.
  2. Demirbas A.; Karslioglu S. (2007) Biodiesel production facilities from vegetable oils and animal fats. Energy Source 29:133?41.
  3. Lang X.; Macdonald D.G.; Hill G.A. (2001) Recycle bioreactor for bioethanol production from wheat starch II. Fermentation and economics. Energy Source 23:427?36.
  4. Lennartsson, P. R.; Erlandsson, P.; Taherzadeh, M. J. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technology 165 (2014) 3?8.
  5. Hartemink, A.E. (2008) Sugarcane for bioethanol: soil and environmental issues, AdvAgron99: 125?182.
  6. CONAMA (2015) Cana-de-a??car: acompanhamento da safrabrasileira, 2- SAFRA, 2015/16- N.3 - Terceirolevantamento.
  7. Trostle, R. Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices. USDA economic research service, report WRS-0801, Washington, DC; July 2008.
  8. Pereira Jr., N. (2008) Biomass of lignocellulosic composition for fuel ethanol production within the context of biorefinery. Escola de Qu?mica/UFRJ.
  9. McMillan, J.D.; Newman, M.M.; Templeton, D.W.; Mohagheghi, A. (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonasmobilis. Appl. Biochem. Biotech.77-79: 649-665.
  10. Galbe, M.; Zacchi G. (2002) A review of the production of ethanol from softwood, ApplMicrobiolBiotechnol59: 618?628.
  11. Tano, M.; Buzato, J.; Celliogoi, M. A. (2000) Sugar Cane Juice Fermentation by Zymomonas mobilis CP4 Subjected to Inhibition by Ethanol and High Initial Concentration of Substrate. Brasilian Arch. Tech. 43.
  12. Daugulis, A. J.; McLellan, P. J.; Li, J. (1997) Experimental investigation and modeling of oscillatory behavior in the continuous culture of Zymomonasmobilis. Biotech. andBioeng. 99-105.
  13. Swings, J. and DeLey, J. (1977) The Biology of Zymomonas. Bacteriological Reviews41:1-46.
  14. X. He, B. Wu, H. Qin, Z. Y. Ruan, F. R. Tan, J. L. Wang, Z. X. Shui, L. C. Dai, Q. L. Zhu, K. Pan, X. Y. Tang, W. G. Wang and Q. C. Hu, Biotechnol. Biofuels, 2014, 7, 101.
  15. S. Panesar, S. S. Marwaha and J. F. Kennedy, J. Chem. Technol. Biotechnol., 2006, 81, 623?635.
  16. Kannan, T. R.; Sangiliyandi, G.; Gunasekaran, P. (1998) Improved ethanol production from sucrose by a mutant of Zymomonasmobilis lacking sucrases in immobilized cell fermentation. Enzyme and Microbial Technology 22: 179-184.
  17. Gunasekaran, P. &Chandrara, J. K. (1999) Ethanol fermentation technology ? Zymomonasmobilis. Current Science 77: 56-68.
  18. Yanase, H.; Iwata, M.; Nakahigashi, R.; Kita, K.; Kato, N.; Tonomura, K. (1992) Purification, crystallization, and characterization of the extracellular levansucrase from Zymomonasmobilis. Bioscience, Biotechnology and Biochemistry 56: 1335-1337.
  19. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H. and Doelle, M. (1993) Zymomonasmobilis ? science and industrial application. Crit. Rev. Biotechnol. 13 (57-98).
  20. You et al., (2017) Bio-ethanol production by Zymomonasmobilis using pretreated dairy manure as a carbon and nitrogen source. RSC Adv.,2017,7,3768.
  21. Falc?o de Morais, J. (1982) Zymomonasmobilise seuempregocomoagente de fermenta??oalco?lica.Revista do Instituto de Antibi?ticos?: 169-182.
  22. Betancur, G. V. (2005). MSc thesis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ.
  23. Vasques, M. P. (2007). DSc thesis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ.
  24. Santos, D. S.; Camelo, A. C.; Rodrigues, K. C. P.; Carlos, L. C.; Pereira Jr., N. (2009) Ethanol production from Sugarcane bagasse by Zymomonasmobilis using Simultaneous Saccharification and Fermentation (SSF) Process. Applied Biochemistry and Biotechnology121 (1-8): 93-105.
  25. Yu, J.; Zhang, X.; Tan, T. (2009) Optimization of media conditions for the production of ethanol from sweet sorghum juice by immobilized Saccharomyces cerevisiae. Biomass and Bioenergy 33: 521-526.
  26. Neto, D. C.; Buzato, J. B.; Pedrine, M. A.; Celligoi, C.; Oliveira, M. R. (2005) Otimiza??o da produ??o de etanolporZymomonasmobilisnafermenta??o do mela?o de cana-de-a??car. Ci?nciasExatas e Tecnol?gicas26 (1): 17-22.
  27. Soleimani, S., Ghasemi, M.F. and Shokri, S, ?Ethanol production by Zymomonasmobilis PTCC 1718 using low cost substrates,? African Journal of Microbiology Research, 6 (4). 704-712. Jan.2012.
  28. Patle S, Lal B. Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using Candida tropicalis and Zymomonasmobilis. Biomass Bioenergy. 2008;32:596-602.
  29. Belauich JP, Senez JC. Influence of aeration and of pantothenate on growth yields of J Bacteriol. 1965 May;89:1195-200.
  30. Sim?es, M. S.; Rocha, J. V.; Lamparelli, R. A. C. (2005) Indicadores de crescimento e produtividade da cana-de-a??car. Scientiaagricola62 (1): 23-30.
  31. Cao, J. F.; Gao, B. P.; Gu, W. B. (2006) Study on producing alcohol fermentation conditions by sweet sorghum juice. ActaAgriculturaeBorealiOccidentaisSinica 15 (3): 201?3.
  32. Fran?a, F. P. & Rodrigues, C. S. (1985) Fermenta??oalco?licadesenvolvidaporZymomonasMobilis CP-3. Revistalatino-americana de microbiologia. Revistalatino-americana de microbiologia 27: 27-30.
  33. Galani, I.; Drainas, C.; Typas, M.A. (1985) Growth Requirements and the Establishment of a Chemically Defined Minimal M?dium in Biotechnology Letters Biotechnology Letters7: 673-678.
  34. Pinilla, L. I; S?ez, R.G.T.; Ortiz, C. Bioethanol production in batch mode by a native strain of Zymomonas. World J MicrobiolBiotechnol (2011) 27:2521?2528. DOI 10.1007/s11274-011-0721-7
  35. Wilkins, M. R. Effect of orange peel oil on ethanol production by Zymomonasmobilis. (2009) DOI: 10.1016/j.biombioe.2008.08.010.
  36. B Maiti et al. Optimization of Process Parameters for Ethanol Production From Sugar Cane Molasses by ZymomonasMobilis Using Response Surface Methodology and Genetic Algorithm. ApplMicrobiolBiotechnol 90 (1), 385-395. 2011.

[Danielle da Silveira dos Santos Martins, Aghata Rodrigues Souza, Elcio R. Borges, Jessica D. Pe?a and Nei Pereira Jr. (2017); OPTIMIZATION OF FERMENTATION CONDITIONS FOR THE ETHANOL PRODUCTION FROM SUGARCANE BAGASSE BY ZYMOMONAS MOBILIS USING RESPONSE SURFACE METHODOLOGY. Int. J. of Adv. Res. 5 (Sep). 1062-1072] (ISSN 2320-5407). www.journalijar.com


Danielle Martins
Nucleus in Ecology and Socio-environmental Development of Macaé- Federal University of Rio de Janeiro

DOI:


Article DOI: 10.21474/IJAR01/5424      
DOI URL: http://dx.doi.org/10.21474/IJAR01/5424