30Jan 2017

EFFLUX AS AN ARISING CAUSE OF DRUG RESISTANCE IN E. COLI.

  • Department of Microbiology Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Multidrug resistant strains of bacteria which are characterized as serious public health problem may arise due to over expression of efflux pumps. Efflux pumps in bacteria can be detected by using specialized instruments. In the present study simple instrument free agar cartwheel method was used to detect efflux pumps in E.coli with some modification. Four isolates of E.coli were collected and processed. Biochemical analysis of all the strains was done using standard protocol. Further cartwheel assay was performed. MIC method was used to confirm the observations of agar cartwheel assay. In Cartwheel assay, a total of 4 strains of E.coli were analyzed for the presence of efflux pumps, active efflux pump was detected in 1 isolate while it was not observed in 3 strains. Bacterial isolate which contains efflux pump also showed high MIC value for the antibiotics used. But in the presence of an EPI, a considerable decrease in the MIC of antibiotics was observed among isolate containing efflux pump, while there was no decrease in MIC of antibiotics for strains without efflux pumps. Present study revealed that cartwheel assay to detect efflux pumps is a reliable, fast and sensitive technique, which may reduce time and efforts to detect efflux pumps.


  1. Buxton, A., Fraser, G. (1977). Escherichia coli, in animal microbiology. Blackwell Scientific Publications., 1:78-80.
  2. Rosa, D., Jose, G., Gonzalo, P.(2001). Antibiotic susceptibility of bacterial strains isolated from patients with community- acquired urinary tract infections. International Journal of Antimicrobial Agents., 18:211-5.
  3. Levy, SB.(1994). Balancing the drug-resistance equation. Trends in Microbiology., 2:341-2.
  4. Andersen, C., Koronakis, E., Bokma, E., Eswaran, J., Humphreys, D., Hughes, C., et al. (2002). Transition to the open state of the Tol C periplasmic tunnel entrance. Proceedings of the National Academy of Sciences USA., 99:11103-08.
  5. Piddock L.J.(2006). Multidrug-resistance efflux pumps - not just for resistance. Nature Reviews Microbiology., 4:629-36.
  6. Webber, M.A., Piddock, L.J.V.(2003). The importance of efflux pumps in antibiotic resistance. Journal of Antimicrobial Chemotherapy., 51:9-11.
  7. Li, H.Z., Nikaido, H.(2004). Efflux – mediated drug resistance in bacteria. Drugs., 64:159 - 04.
  8. Bambeke, V.F., Balzi, E., Tulkens, P.M.(2000). Antibiotic efflux pumps. Biochemical pharmacology., 60:457 -70.
  9. Stavri, M., Piddock, L.J.W., Gibbons, S. (2007). Bacterial efflux pumps from natural sources. Journal of Antimicrobial Chemotherapy., 59:1247- 60.
  10. Levy, S.B. (2002). Active efflux, a common mechanism for biocide and antibiotic resistance. Journal of Applied Microbiology., 92 (Supplement):65S- 71S.
  11. Poole, K. (2005). Efflux–mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy., 56:20-51.
  12. Nikaido, H. (1998). Multiple antibiotic resistance and efflux. Current Opinion in Microbiology., 1:516- 23.
  13. Barbara, Z., Versace, I. (2009). Inhibitors of multidrug resistant efflux systems in bacteria. Recent Patents on Anti-infective Drug Discovery., 4:37-50.
  14. Stermitz, F.R., Lorenz, P., Tawara, J.N. (2009). Synergy in a medicinal  plant : antimicrobial  action  of  berberine  potentiated  by 5’ – methoxyhydnocarpin, a multidrug  pump inhibitor. Proceeding of the National Academy of Sciences USA., 97:1433- 7.
  15. Omigie, O., Enweani, IB., Ohenhen, R.E., Umolu, I.P., Edo, O.O.B. (2006). Bacteriological survey of wound infections in Benin City, Nigeria. Nigerian Annual National Sciences., 6.
  16. Andersen, C. (2003). Channel- tunnels:  outer membrane components of type 1 Secretion systems and multidrug efflux pumps of Gram - negative bacteria. Review of   Physiology, Biochemistry and Pharmacology., 147:122- 65.
  17. Zgurskaya, H.I., Nikaido, H. (2000a). Multidrug resistance mechanisms: drug efflux across two membranes. Molecular Microbiology., 37:219- 25.
  18. Bohnert, J.A., Schuster, S., Seeger, M.A., Fahnrich, E., Pos, K.M., Kern, W.V, et al. (2008). Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. Journal of Bacteriology., 190:8225-9.
  19. Bohnert, J.A, Schuster, S., Szymaniak,-Vits, M., Kern, W.V. (2011). Determination of real time efflux phenotypes in Escherichia coli AcrB binding pocket phenylalanine mutants using a 1, 2 ‘- Dinaphthylamine Efflux assay. PLOS ONE., 6(6):e21196.
  20. Eicher, T., Cha, H.J., Seeger, M.A. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch- loop. Proceedings in National Academy of Sciences USA. 109:5687-92.
  21. Husain, F., Nikaido, H. (2010). Substrate path in the AcrB multidrug efflux pump of Escherichia coli Journal of Molecular Microbiology., 78 (2):320-30.
  22. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B., Hughes, C. (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature., 405:914.
  23. Mikolosko, J., Bobyk, , Zgurskaya, H.I., Ghosh, P. (2006).  Conformational flexibility in multidrug  efflux system protein AcrA. Structure., 14:577- 87.
  24. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T., Yamagu- chi, A. (2006). Crystal structure of a multidrug transporter reveals a functionally rotating mechanism. Nature., 443:173-9.
  25. Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., Yamaguchi, A. (2011). Structures of the multidrug exporter AcrB reveal a proximal multisite drug binding pocket. Nature., 480:565- 9.
  26. Seeger, M.A., Schiefner, A., Eicher, T., Verrey, F., Diederichs, K., Pos, K.M. (2006). Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science., 313: 1295-8.
  27. Takatsuka, Y., Nikaido, H. (2009). Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. Journal of Bacteriology., 191:1729-37.
  28. Martins, M., McCuskin, M.P., Viveiros, M., Couto, I., Fannings, S., Pages, J.M et al. (2013). Simple Method for Assessment of MDR Bacteria for Over –Expressed Efflux Pumps, Open Microbiol J, 7: (1-M6), 2013, 72-82.
  29. Aneja, K.R. (2003). Experiments in Microbiology, Plant Pathology and Biotechnology. 4th edition. New Age International.
  30. Costa, S.S., Junqueira, E., Palma, C., Viveiros, M., Cristino, J.M., Amaral, L., et al. (2013). Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus. Antibiotics., 2:83-99.
  31. Patel, D., Kosmidis, C., Seo, S.M., Kaatz, G.W. (2010). Ethidium bromide MIC screening for  enhanced efflux pumps gene expression or efflux activity in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy., 54:5070-3.
  32. Martins, M., Viveiros, M., Couto, I., Costa, S.S., Pacheco, T., Fanning, S., et al. (2011). Identification of efflux pump-mediated multidrug-resistant bacteria by the Ethidium Bromide-agar Cartwheel Method In Vivo. 25:171-8.
  33. Abdi-Ali, A., Mohammadi-Mehr, M., Agha Alaei, Y. (2006). Bactericidal activity of various antibiotics against biofilm producing Pseudomonas aeruginosa. Int J Antimicrob Agents., 27, 196-200.

[Rakesh kumar Savita Jandaik and Pooja Patial. (2017); EFFLUX AS AN ARISING CAUSE OF DRUG RESISTANCE IN E. COLI. Int. J. of Adv. Res. 5 (Jan). 1999-2007] (ISSN 2320-5407). www.journalijar.com


RAKESH KUMAR
Department of Microbiology Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.

DOI:


Article DOI: 10.21474/IJAR01/2971      
DOI URL: https://dx.doi.org/10.21474/IJAR01/2971