27Feb 2017

WEYL FRACTIONAL DERIVATIVE OF THE PRODUCT MULTIVARIABLES POLYNOMIALS AND I –FUNCTION.

  • Department of University Institute of Engineering& Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

In this research work , we establish a theorem on Weyl fractional derivative of the product multivariable polynomials and I –function . Certain special cases of our theorem have been discussed . Mathematics Subject classification - 26A33,33C 60 , 44A15.


  1. Agrawal,P.(2011). On multiple integral relations involving eneralized Mellin-Barnes type of contour integral. Tamsui Oxford Journal of Information and Mathematical Sciences. 27(4) 449 – 462 Aletheia University.
  2. Fox, C. (1968). The G and H-function as Symmetrical Fourier, Trans. Math. Soc., 98, 395-429.
  3. Gupta, K.C. and Jain, U.C. (1968). On the derivative of the H-functions. Nat. Acad. Sci. India Sect., A 38, 189-192.
  4. Gupta, K.C. and Soni, R.C. (2006). On a basic integral formula involving the product of the H-function and Fox H-function. Raj. Acad. Sci., 4(3), 157 .
  5. Miller, K.S. (1975). The Weyl fractional calculus, fractional calculus and its applications. Lecture Notes in Math., 457, springer-Verlag, New York, 80-89.
  6. Oldhan, K.B. and Spanier, J. (1974). The fractional calculus Academic press. New York and London.
  7. Ross, B. (1974). Fractional Calculus and its applications (Proceeding of the international conference held at the university of New Haven. Springer, yerlag, Berlin Heidelberg and New York.
  8. SaigÖ, M., Saxena R.K. and Ram, J. (1992). On the fractional calculus operator associated with the H-function. Ganita Sandesh 6(1), 36-47
  9. Srivastava, H. M. (1972) . A contour integral involving Fox’s H-function. India J. Math. 14, 1 – 6.
  10. Srivastava, H. M., Gupta, K.C. and Goyal, S.P. (1982). The H -function of one and two variables with applications. South Asian Publishers, New Delhi, Madras.
  11. Srivastava, H. M. and Garg, M. (1987). Some integrals involving a general class of polynomials and multivariable H-function. Rev                Roumaine Phy., 32, 685 – 692.
  12. Saxena, V.P. (1982). Formal solution of certain new pair of Dual integral equations involving H-function. Nat. Acad. Sci. India 52, A III, 366-375.

[Harish Kumar Mishra. (2017); WEYL FRACTIONAL DERIVATIVE OF THE PRODUCT MULTIVARIABLES POLYNOMIALS AND I –FUNCTION. Int. J. of Adv. Res. 5 (Feb). 1576-1581] (ISSN 2320-5407). www.journalijar.com


Harish Kumar Mishra
Department of University Institute of Engineering& Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.

DOI:


Article DOI: 10.21474/IJAR01/3318      
DOI URL: https://dx.doi.org/10.21474/IJAR01/3318