25Mar 2017


  • National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
  • Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt.
  • College of Science and Arts in Unaizah, Qassim University, Unaizah, Saudi Arabia.
  • College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia.
  • College of information science and technology, Beijing normal university, Beijing, china.
  • Department of Computer Science and Information Technology, University of Management Sciences and Information Technology, Kotli Azad Kashmir, 11100, Pakistan.
  • State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei,China.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Molecular techniques, such as 16S rRNA sequencing and whole microbial genome sequencing, have revolutionized the standard microbiological practice by disclosing the remarkable diversity, composition and identity of bacterial communities associated with eukaryotes. Here, we outline the development from the single-gene analysis in an ecosystem to the compounded genetic information of the entire ecosystem employing high-throughput sequencing technologies. We also provide the microbial communities associated with eukaryotic organisms, including some parasitic helminths. We hope that the information provided here will be useful to widen our understanding of the techniques in most reasonably equipped molecular biology laboratories, and bacteria associated with eukaryotes, involving parasitic heliminths.

  1. B. Whitman, D.C. Coleman, and W.J. Wiebe, Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America 95 (1998) 6578-83.
  2. Backhed, R.E. Ley, J.L. Sonnenburg, D.A. Peterson, and J.I. Gordon, Host-bacterial mutualism in the human intestine. Science (New York, N.Y.) 307 (2005) 1915-20.
  3. F. DeLong, Microbial population genomics and ecology. Current opinion in microbiology 5 (2002) 520-524.
  4. Handelsman, Metagenomics: application of genomics to uncultured microorganisms. Microbiology and molecular biology reviews : MMBR 68 (2004) 669-85.
  5. Handelsman, M.R. Rondon, S.F. Brady, J. Clardy, and R.M. Goodman, Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology 5 (1998) R245-9.
  6. A Primer on Metagenomics, Public Library of Science, 2010.
  7. Fiers, R. Contreras, F. Duerinck, G. Haegeman, D. Iserentant, J. Merregaert, W. Min Jou, F. Molemans, A. Raeymaekers, A. Van den Berghe, G. Volckaert, and M. Ysebaert, Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260 (1976) 500-7.
  8. Sanger, A.R. Coulson, T. Friedmann, G.M. Air, B.G. Barrell, N.L. Brown, J.C. Fiddes, C.A. Hutchison, 3rd, P.M. Slocombe, and M. Smith, The nucleotide sequence of bacteriophage phiX174. Journal of molecular biology 125 (1978) 225-46.
  9. D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R. Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, K. McKenney, G. Sutton, W. FitzHugh, C. Fields, J.D. Gocayne, J. Scott, R. Shirley, L.I. Liu, A. Glodek, J.M. Kelley, J.F. Weidman, C.A. Phillips, T. Spriggs, E. Hedblom, M.D. Cotton, T.R. Utterback, M.C. Hanna, D.T. Nguyen, D.M. Saudek, R.C. Brandon, L.D. Fine, J.L. Fritchman, J.L. Fuhrmann, N.S.M. Geoghagen, C.L. Gnehm, L.A. McDonald, K.V. Small, C.M. Fraser, H.O. Smith, and J.C. Venter, Whole-Genome Random Sequencing and Assembly of Haemophilus influenzae Rd. Science. 269 (1995) 496.
  10. Hamady, J.J. Walker, J.K. Harris, N.J. Gold, and R. Knight, Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5 (2008) 235-7.
  11. A. Dojka, P. Hugenholtz, S.K. Haack, and N.R. Pace, Microbial Diversity in a Hydrocarbon- and Chlorinated-Solvent-Contaminated Aquifer Undergoing Intrinsic Bioremediation. Applied and environmental microbiology 64 (1998) 3869-3877.
  12. Urbach, K.L. Vergin, L. Young, A. Morse, G.L. Larson, and S.J. Giovannoni, Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. LNO Limnology and Oceanography 46 (2001) 557-572.
  13. E. Axelrood, M.L. Chow, C.C. Radomski, J.M. McDermott, and J. Davies, Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can. J. Microbiol. Canadian Journal of Microbiology 48 (2002) 655-674.
  14. Empirical and Theoretical Bacterial Diversity in Four Arizona Soils, American Society for Microbiology.
  15. S. Elshahed, J.M. Senko, F.Z. Najar, S.M. Kenton, B.A. Roe, T.A. Dewers, J.R. Spear, and L.R. Krumholz, Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Applied and environmental microbiology 69 (2003) 5609-21.
  16. A. Huber, D.A. Butterfield, and J.A. Baross, Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS microbiology ecology 43 (2003) 393-409.
  17. Fierer, M.A. Bradford, and R.B. Jackson, TOWARD AN ECOLOGICAL CLASSIFICATION OF SOIL BACTERIA. Ecology 88 (2007) 1354-1364.
  18. F. Roesch, R.R. Fulthorpe, A. Riva, G. Casella, A.K. Hadwin, A.D. Kent, S.H. Daroub, F.A. Camargo, W.G. Farmerie, and E.W. Triplett, Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME journal 1 (2007) 283-90.
  19. R. Woese, Bacterial evolution. Microbiol Rev 51 (1987) 221-71.
  20. R. Woese, G.E. Fox, L. Zablen, T. Uchida, L. Bonen, K. Pechman, B.J. Lewis, and D. Stahl, Conservation of primary structure in 16S ribosomal RNA. Nature 254 (1975) 83-86.
  21. J. Lane, B. Pace, G.J. Olsen, D.A. Stahl, M.L. Sogin, and N.R. Pace, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82 (1985) 6955-6959.
  22. R. Pace, D.A. Stahl, D.J. Lane, and G.J. Olsen, The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. in: K.C. Marshall, (Ed.), Advances in Microbial Ecology, Springer US, Boston, MA, 1986, pp. 1-55.
  23. Salemi, and A.-M. Vandamme, The phylogenetic handbook : a practical approach to DNA and protein phylogeny, Cambridge University Press, Cambridge, UK; New York, 2007.
  24. G. Weisburg, S.M. Barns, D.A. Pelletier, and D.J. Lane, 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology 173 (1991) 697-703.
  25. Coenye, and P. Vandamme, Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiology Letters 228 (2003) 45-49.
  26. M. Neefs, Y. Van de Peer, P. De Rijk, S. Chapelle, and R. De Wachter, Compilation of small ribosomal subunit RNA structures. Nucleic acids research 21 (1993) 3025-49.
  27. J. Lane, B. Pace, G.J. Olsen, D.A. Stahl, M.L. Sogin, and N.R. Pace, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82 (1985) 6955-9.
  28. R. Woese, Bacterial evolution. Microbiological Reviews 51 (1987) 221-271.
  29. E. Clarridge, 3rd, Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17 (2004) 840-62, table of contents.
  30. R. Woese, and G.E. Fox, Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74 (1977) 5088-90.
  31. J. Olsen, D.J. Lane, S.J. Giovannoni, N.R. Pace, and D.A. Stahl, Microbial ecology and evolution: a ribosomal RNA approach. Annual review of microbiology 40 (1986) 337-65.
  32. L. Metzker, Sequencing technologies - the next generation. Nature reviews. Genetics 11 (2010) 31-46.
  33. J. Loman, R.V. Misra, T.J. Dallman, C. Constantinidou, S.E. Gharbia, J. Wain, and M.J. Pallen, Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotech 30 (2012) 434-439.
  34. STACKEBRANDT, and B.M. GOEBEL, Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic and Evolutionary Microbiology 44 (1994) 846-849.
  35. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, and J.M. Tiedje, The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic acids research 37 (2009) D141-5.
  36. McDonald, M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. DeSantis, A. Probst, G.L. Andersen, R. Knight, and P. Hugenholtz, An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME journal 6 (2012) 610-8.
  37. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F.O. Glockner, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research 41 (2013) D590-6.
  38. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7 (2010) 335-6.
  39. D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and environmental microbiology 75 (2009) 7537-41.
  40. S. Schmidt, J.F. Matias Rodrigues, and C. von Mering, Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale. PLoS computational biology 10 (2014) e1003594.
  41. J. Cox, W.O. Cookson, and M.F. Moffatt, Sequencing the human microbiome in health and disease. Human molecular genetics 22 (2013) R88-94.
  42. L. Greathouse, M.A. Faucher, and M. Hastings-Tolsma, The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health. Western journal of nursing research (2017) 193945917697223.
  43. L. Hao, and Y.K. Lee, Microflora of the gastrointestinal tract: a review. Methods in molecular biology (Clifton, N.J.) 268 (2004) 491-502.
  44. Tuomisto, A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. ECOGRAPHY -COPENHAGEN- 33 (2010) 2-22.
  45. N. Hobson, and C.S. Stewart, The rumen microbial ecosystem, Blackie Academic, London, 1997.
  46. Malmuthuge, and L.L. Guan, Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation. Journal of Animal Science and Biotechnology 8 (2017) 8.
  47. Li, G.B. Penner, E. Hernandez-Sanabria, M. Oba, and L.L. Guan, Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. JAM Journal of Applied Microbiology 107 (2009) 1924-1934.
  48. A. Kocherginskaya, R.I. Aminov, and B.A. White, Analysis of the Rumen Bacterial Diversity under two Different Diet Conditions using Denaturing Gradient Gel Electrophoresis, Random Sequencing, and Statistical Ecology Approaches. Anaerobe 7 (2001) 119-134.
  49. Zhou, E. Hernandez-Sanabria, and L.L. Guan, Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Applied and environmental microbiology 75 (2009) 6524-33.
  50. Tajima, R.I. Aminov, T. Nagamine, H. Matsui, M. Nakamura, and Y. Benno, Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and environmental microbiology 67 (2001) 2766-74.
  51. Liu, A.P. da Cunha, R.M. Rezende, R. Cialic, Z. Wei, L. Bry, L.E. Comstock, R. Gandhi, and H.L. Weiner, The Host Shapes the Gut Microbiota via Fecal MicroRNA. Cell host & microbe 19 (2016) 32-43.
  52. Jami, A. Israel, A. Kotser, and I. Mizrahi, Exploring the bovine rumen bacterial community from birth to adulthood. The ISME journal 7 (2013) 1069-79.
  53. Henderson, F. Cox, S. Ganesh, A. Jonker, W. Young, and P.H. Janssen, Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific reports 5 (2015) 14567.
  54. L. Knoell, S. Fernando, and N.-L. University of, The effect of diet on the bovine rumen microbial community structure and composition and its effects on methane production in growing and finishing cattle, 2016.
  55. C. Shanks, C.A. Kelty, S. Archibeque, M. Jenkins, R.J. Newton, S.L. McLellan, S.M. Huse, and M.L. Sogin, Community structures of fecal bacteria in cattle from different animal feeding operations. Appl. Environ. Microbiol. Applied and Environmental Microbiology 77 (2011) 2992-3001.
  56. Uyeno, S. Shigemori, and T. Shimosato, Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes and Environments 30 (2015) 126-132.
  57. Zhao, G. Wang, P. Siegel, C. He, H. Wang, W. Zhao, Z. Zhai, F. Tian, J. Zhao, H. Zhang, Z. Sun, W. Chen, Y. Zhang, and H. Meng, Quantitative genetic background of the host influences gut microbiomes in chickens. Scientific reports 3 (2013) 1163.
  58. Roehe, R.J. Dewhurst, C.A. Duthie, J.A. Rooke, N. McKain, D.W. Ross, J.J. Hyslop, A. Waterhouse, T.C. Freeman, M. Watson, and R.J. Wallace, Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLoS genetics 12 (2016) e1005846.
  59. A. Stewart, V.S. Chadwick, and A. Murray, Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. Journal of medical microbiology 54 (2005) 1239-42.
  60. Fonty, P. Gouet, J.P. Jouany, and J. Senaud, Establishment of the Microflora and Anaerobic Fungi in the Rumen of Lambs. Microbiology Microbiology 133 (1987) 1835-1843.
  61. P. Bryant, N. Small, C. Bouma, and I. Robinson, Studies on the Composition of the Ruminal Flora and Fauna of Young Calves. JODS Journal of Dairy Science 41 (1958) 1747-1767.
  62. N. Gou, Z.B. Nan, and F.J. Hou, Diversity and structure of a bacterial community in grassland soils disturbed by sheep grazing, in the Loess Plateau of northwestern China. Genetics and molecular research : GMR 14 (2015) 16987-99.
  63. W. Li, S. Wu, W. Li, K. Navarro, R.D. Couch, D. Hill, and J.F. Urban, Jr., Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infection and immunity 80 (2012) 2150-7.
  64. W. Li, W. Li, J. Sun, P. Yu, R.L. Baldwin, and J.F. Urban, The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome. Scientific reports 6 (2016) 20606.
  65. A. Reynolds, B.B. Finlay, and R.M. Maizels, Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. Journal of immunology (Baltimore, Md. : 1950) 195 (2015) 4059-66.
  66. M. Zaiss, and N.L. Harris, Interactions between the intestinal microbiome and helminth parasites. PIM Parasite Immunology 38 (2016) 5-11.
  67. Bhattacharjee, N. Kalbfuss, and C. Prazeres da Costa, Parasites, microbiota and metabolic disease. Parasite immunology (2016).
  68. I.H.H.M.P.W.G. The, J. Peterson, S. Garges, M. Giovanni, P. McInnes, L. Wang, J.A. Schloss, V. Bonazzi, J.E. McEwen, K.A. Wetterstrand, C. Deal, C.C. Baker, V. Di Francesco, T.K. Howcroft, R.W. Karp, R.D. Lunsford, C.R. Wellington, T. Belachew, M. Wright, C. Giblin, H. David, M. Mills, R. Salomon, C. Mullins, B. Akolkar, L. Begg, C. Davis, L. Grandison, M. Humble, J. Khalsa, A.R. Little, H. Peavy, C. Pontzer, M. Portnoy, M.H. Sayre, P. Starke-Reed, S. Zakhari, J. Read, B. Watson, and M. Guyer, The NIH Human Microbiome Project. Genome Research 19 (2009) 2317-2323.
  69. E. Ley, D.A. Peterson, and J.I. Gordon, Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell. 124 (2006) 837.
  70. Dale, and N.A. Moran, Molecular Interactions between Bacterial Symbionts and Their Hosts. Cell 126 (2006) 453-465.
  71. Goodrich-Blair, and D.J. Clarke, Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Molecular microbiology 64 (2007) 260-8.
  72. L. Thao, P.J. Gullan, and P. Baumann, Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Applied and environmental microbiology 68 (2002) 3190-7.
  73. A. Moran, J.P. McCutcheon, and A. Nakabachi, Genomics and evolution of heritable bacterial symbionts. Annual review of genetics 42 (2008) 165-90.
  74. C. Darby, S.M. Chandler, S.C. Welburn, and A.E. Douglas, Aphid-Symbiotic Bacteria Cultured in Insect Cell Lines. Applied and Environmental Microbiology Applied and Environmental Microbiology 71 (2005) 4833-4839.
  75. Moya, J. Peretó, R. Gil, and A. Latorre, Learning how to live together: genomic insights into prokaryote-animal symbioses. Nature reviews. Genetics 9 (2008) 218-29.
  76. Bright, and S. Bulgheresi, A complex journey: transmission of microbial symbionts. NATURE REVIEWS MICROBIOLOGY 8 (2010) 218-230.
  77. Kikuchi, T. Hosokawa, and T. Fukatsu, Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Applied and environmental microbiology 73 (2007) 4308-16.
  78. Aida, M. Kanemori, N. Kubota, M. Matada, Y. Sasayama, and Y. Fukumori, Distribution and Population of Free-Living Cells Related to Endosymbiont A Harbored in <i>Oligobrachia mashikoi</i> (a Siboglinid Polychaete) Inhabiting Tsukumo Bay. Microbes and Environments 23 (2008) 81-88.
  79. L. Salerno, S.A. Macko, S.J. Hallam, M. Bright, Y.J. Won, Z. McKiness, and C.L. Van Dover, Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. The Biological bulletin 208 (2005) 145-55.
  80. Hosokawa, Y. Kikuchi, X.Y. Meng, and T. Fukatsu, The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima. FEMS microbiology ecology 54 (2005) 471-477.
  81. Nikoh, T. Hosokawa, K. Oshima, M. Hattori, and T. Fukatsu, Reductive Evolution of Bacterial Genome in Insect Gut Environment. Genome Biology and Evolution 3 (2011) 702-714.
  82. K. Lee, and S.K. Mazmanian, Has the microbiota played a critical role in the evolution of the adaptive immune system? Science (New York, N.Y.) 330 (2010) 1768-1773.
  83. G. Ruby, Symbiotic conversations are revealed under genetic interrogation. Nature reviews. Microbiology 6 (2008) 752-62.
  84. Dubilier, C. Bergin, and C. Lott, Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature reviews. Microbiology 6 (2008) 725-40.
  85. Piel, Metabolites from symbiotic bacteria. Natural product reports 26 (2009) 338-62.
  86. Dubilier, C. Bergin, and C. Lott, Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Micro 6 (2008) 725-740.
  87. H. Holzapfel, Microbial ecology in growing animals, Elsevier, Amsterdam [u.a.], 2006.
  88. Fonty, P. Gouet, J.-P. Jouany, and J. Senaud, Establishment of the Microflora and Anaerobic Fungi in the Rumen of Lambs. Microbiology 133 (1987) 1835-1843.
  89. S. Cunha, C.C. Barreto, O.Y. Costa, M.A. Bomfim, A.P. Castro, R.H. Kruger, and B.F. Quirino, Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe 17 (2011) 118-24.
  90. Z. Bekele, S. Koike, and Y. Kobayashi, Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS MICROBIOLOGY LETTERS 305 (2010) 49-57.
  91. E. J, R.M. N, J.T. A, and R. John Wallace, 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek 86 (2004) 263-81.
  92. E. Edwards, N.R. McEwan, A.J. Travis, and R. John Wallace, 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek Antonie van Leeuwenhoek : International Journal of General and Molecular Microbiology 86 (2004) 263-281.
  93. Palmer, E.M. Bik, D.B. DiGiulio, D.A. Relman, and P.O. Brown, Development of the human infant intestinal microbiota. PLoS biology 5 (2007) e177.
  94. [94] I. Adlerberth, B. Carlsson, P. de Man, F. Jalil, S.R. Khan, P. Larsson, L. Mellander, C. Svanborg, A.E. Wold, and L.A. Hanson, Intestinal colonization with Enterobacteriaceae in Pakistani and Swedish hospital-delivered infants. Acta paediatrica Scandinavica 80 (1991) 602-10.
  95. Yoshioka, K. Iseki, and K. Fujita, Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72 (1983) 317-21.
  96. Sekirov, S.L. Russell, L.C. Antunes, and B.B. Finlay, Gut microbiota in health and disease. Physiological reviews 90 (2010) 859-904.
  97. B. Eckburg, E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson, and D.A. Relman, Diversity of the human intestinal microbial flora. Science (New York, N.Y.) 308 (2005) 1635-8.
  98. R. Marchesi, Human distal gut microbiome. Environmental microbiology 13 (2011).
  99. Guarner, and J.R. Malagelada, Gut flora in health and disease. Lancet (London, England) 361 (2003) 512-9.
  100. G. Falk, L.V. Hooper, T. Midtvedt, and J.I. Gordon, Creating and Maintaining the Gastrointestinal Ecosystem: What We Know and Need To Know from Gnotobiology. Microbiology and Molecular Biology Reviews 62 (1998) 1157-1170.
  101. J. Telford, S.J. Bourlat, A. Economou, D. Papillon, and O. Rota-Stabelli, The evolution of the Ecdysozoa. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 363 (2008) 1529-37.
  102. M.A. Bourtzis, K. Miller, and A. T, Insect Symbiosis. Vol. 3. (Contemporary Topics in Entomology Series). flen Florida Entomologist 92 (2009) 409-411.
  103. E. Douglas, Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual review of entomology 43 (1998) 17-37.
  104. Akman, A. Yamashita, H. Watanabe, K. Oshima, T. Shiba, M. Hattori, and S. Aksoy, Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature genetics 32 (2002) 402-7.
  105. J. Dillon, and V.M. Dillon, The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49 (2004) 71-92.
  106. E. Douglas, and W.A. Prosser, Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. Journal of Insect Physiology 38 (1992) 565-568.
  107. J. Dillon, and V.M. Dillon, The gut bacteria of insects: nonpathogenic interactions. Annual review of entomology 49 (2004) 71-92.
  108. Tanaka, H. Aoyagi, S. Shiina, Y. Doudou, T. Yoshimura, R. Nakamura, and H. Uchiyama, Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Applied microbiology and biotechnology 71 (2006) 907-17
  109. Rani, A. Sharma, R. Rajagopal, R.K. Bhatnagar, and T. Adak, Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiology BMC Microbiology 9 (2009)
  110. Zouache, F.N. Raharimalala, V. Raquin, V. Tran-Van, L.H. Raveloson, P. Ravelonandro, and P. Mavingui, Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS microbiology ecology 75 (2011) 377-89
  111. Harada, H. Oyaizu, Y. Kosako, and H. Ishikawa, Erwinia aphidicola, a new species isolated from pea aphid, Acyrthosiphon pisum. The Journal of general and applied microbiology 43 (1997) 349-354
  112. United, and S. Forest, Insects of Eastern forests, U.S. Dept. of Agriculture, Forest Service : For sale by the Supt. of Docs., U.S. G.P.O., Washington, D.C., 1989
  113. W. Bracke, D.L. Cruden, and A.J. Markovetz, Intestinal microbial flora of the of the American cockroach, Periplaneta americana L. Applied and environmental microbiology 38 (1979) 945-955
  114. M. Lehman, J.G. Lundgren, and L.M. Petzke, Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their modification by laboratory rearing and antibiotic treatment. Microbial ecology 57 (2009) 349-58
  115. H. Werren, L. Baldo, and M.E. Clark, Wolbachia: master manipulators of invertebrate biology. Nat Rev Micro 6 (2008) 741-751.
  116. Sharon, D. Segal, J.M. Ringo, A. Hefetz, I. Zilber-Rosenberg, and E. Rosenberg, Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 107 (2010) 20051-6.
  117. Xie, B. Tiner, I. Vilchez, and M. Mateos, Effect of the Drosophila endosymbiont Spiroplasma on parasitoid wasp development and on the reproductive fitness of wasp-attacked fly survivors. Evolutionary ecology 53 (2011) 1065-1079.
  118. Stouthamer, J.A. Breeuwer, and G.D. Hurst, Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual review of microbiology 53 (1999) 71-102.
  119. D. Hurst, J.H. Graf von der Schulenburg, T.M. Majerus, D. Bertrand, I.A. Zakharov, J. Baungaard, W. Volkl, R. Stouthamer, and M.E. Majerus, Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect molecular biology 8 (1999) 133-9.
  120. Stouthamer, J.A.J. Breeuwer, R.F. Luck, and J.H. Werren, Molecular identification of microorganisms associated with parthenogenesis. Nature 361 (1993) 66-68.
  121. Duron, D. Bouchon, S. Boutin, L. Bellamy, L. Zhou, J. Engelstadter, and G.D. Hurst, The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC biology 6 (2008) 27.
  122. V. Cowdry, THE DISTRIBUTION OF RICKETTSIA IN THE TISSUES OF INSECTS AND ARACHNIDS. The Journal of Experimental Medicine 37 (1923) 431-456.
  123. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J.H. Werren, How many species are infected with Wolbachia? – a statistical analysis of current data. Fems Microbiology Letters 281 (2008) 215-220.
  124. V.M. Rio, Y. Wu, G. Filardo, and S. Aksoy, Dynamics of multiple symbiont density regulation during host development: tsetse fly and its microbial flora. PROCEEDINGS- ROYAL SOCIETY OF LONDON B 273 (2006) 805-814.
  125. A. McGraw, and S.L. O'Neill, Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila. Current opinion in microbiology 7 (2004) 67-70.
  126. L. Scarborough, J. Ferrari, and H.C. Godfray, Aphid protected from pathogen by endosymbiont. Science (New York, N.Y.) 310 (2005) 1781.
  127. F. Van Emden, and R. Harrington, Aphids as crop pests, 2017.
  128. M. Oliver, N.A. Moran, and M.S. Hunter, Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 12795-12800.
  129. Ferrari, and F. Vavre, Bacterial symbionts in insects or the story of communities affecting communities. Philosophical Transactions of the Royal Society B: Biological Sciences 366 (2011) 1389-1400.
  130. B. Montllor, A. Maxmen, and A.H. Purcell, Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology 27 (2002) 189-195.
  131. S. Gil-Turnes, and W. Fenical, Embryos of Homarus americanus are Protected by Epibiotic Bacteria. The Biological Bulletin The Biological Bulletin 182 (1992) 105-108.
  132. L.L. Kellner, What is the basis of pederin polymorphism in Paederus riparius rove beetles? The endosymbiotic hypothesis. Entomologia Experimentalis et Applicata 93 (1999).
  133. A. Salinas, S.L. Edenborn, A.J. Sexstone, and J.B. Kotcon, Bacterial preferences of the bacterivorous soil nematode Cephalobus brevicauda (Cephalobidae): Effect of bacterial type and size. Pedobiologia 51 (2007) 55-64.
  134. Rodger, B.S. Griffiths, J.W. McNicol, R.W. Wheatley, and I.M. Young, The Impact of Bacterial Diet on the Migration and Navigation of Caenorhabditis elegans. MICROBIAL ECOLOGY -NEW YORK- 48 (2004) 358-365.
  135. Celhay, and M.J. Blaser, Competition and Resilience between Founder and Introduced Bacteria in the Caenorhabditis elegans Gut. Infection and immunity 80 (2012) 1288-1299.
  136. Peleg, E. Tampakakis, B.B. Fuchs, G.M. Eliopoulos, R.C. Moellering, Jr., and E. Mylonakis, Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 105 (2008) 14585-90.
  137. M. Treonis, E.H. Michelle, C.A. Oleary, E.E. Austin, and C.B. Marks, Identification and localization of food-source microbial nucleic acids inside soil nematodes. Soil Biology and Biochemistry Soil Biology and Biochemistry 42 (2010) 2005-2011.
  138. Ladygina, T. Johansson, B. Canback, A. Tunlid, and K. Hedlund, Diversity of bacteria associated with grassland soil nematodes of different feeding groups. FEMS microbiology ecology 69 (2009) 53-61.
  139. M. Cavanaugh, Microbial Symbiosis: Patterns of Diversity in the Marine Environment. Am Zool American Zoologist 34 (1994) 79-89.
  140. F. Polz, H. Felbeck, R. Novak, M. Nebelsick, and J.A. Ott, Chemoautotrophic, sulfur-oxidizing symbiotic bacteria on marine nematodes: Morphological and biochemical characterization. Microbial ecology 24 (1992) 313-29.
  141. Bayer, N.R. Heindl, C. Rinke, S. Lücker, J.A. Ott, and S. Bulgheresi, Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. Environmental Microbiology Reports 1 (2009) 136-144.
  142. Heterorhabditis, Steinernema and their bacterial symbionts - lethal pathogens of insects, Koninklijke Brill NV., 2000.
  143. E. Herbert, and H. Goodrich-Blair, Friend and foe: the two faces of Xenorhabdus nematophila. Nature reviews. Microbiology 5 (2007) 634-46.
  144. E. Boemare, and R.J. Akhurst, Biochemical and Physiological Characterization of Colony Form Variants in Xenorhabdus spp. (Enterobacteriaceae). Microbiology Microbiology 134 (1988) 751-761.
  145. H. ffrench-Constant, A. Dowling, and N.R. Waterfield, Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon : official journal of the International Society on Toxinology 49 (2007) 436-51.
  146. Phylogeny of Wolbachia in filarial nematodes.
  147. H. Kramer, B. Passeri, S. Corona, L. Simoncini, and M. Casiraghi, Immunohistochemical/immunogold detection and distribution of the endosymbiont Wolbachia of Dirofilaria immitis and Brugia pahangi using a polyclonal antiserum raised against WSP (Wolbachia surface protein). Parasitology research 89 (2003) 381-6.
  148. D. Hansen, A.J. Trees, G.S. Bah, U. Hetzel, C. Martin, O. Bain, V.N. Tanya, and B.L. Makepeace, A worm's best friend: recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proceedings. Biological sciences 278 (2011) 2293-302.
  149. J. Taylor, C. Bandi, and A. Hoerauf, Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol 60 (2005) 245-84.
  150. Hoerauf, and K. Pfarr, Wolbachia Endosymbionts: An Achilles Heel of Filarial Nematodes. (2007).
  151. Foster, M. Ganatra, I. Kamal, J. Ware, K. Makarova, N. Ivanova, A. Bhattacharyya, V. Kapatral, S. Kumar, J. Posfai, T. Vincze, J. Ingram, L. Moran, A. Lapidus, M. Omelchenko, N. Kyrpides, E. Ghedin, S. Wang, E. Goltsman, V. Joukov, O. Ostrovskaya, K. Tsukerman, M. Mazur, D. Comb, E. Koonin, and B. Slatko, The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS biology 3 (2005) e121.
  152. Fenn, and M. Blaxter, Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol 22 (2006) 60-5.
  153. A. Punkosdy, D.G. Addiss, and P.J. Lammie, Characterization of Antibody Responses to Wolbachia Surface Protein in Humans with Lymphatic Filariasis. Infection and immunity 71 (2003) 5104-5114.
  154. I. Amann, W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59 (1995) 143-69.
  155. C. Hsu, K.R. Johansson, and M.J. Donahue, The Bacterial Flora of the Intestine of Ascaris suum and 5-Hydroxytryptamine Production. The Journal of parasitology 72 (1986) 545-549.
  156. M. Shahkolahi, and M.J. Donahue, Bacterial flora, a possible source of serotonin in the intestine of adult female Ascaris suum. The Journal of parasitology 79 (1993) 17-22.
  157. T. Walk, A.M. Blum, S.A.-S. Ewing, J.V. Weinstock, and V.B. Young, Alteration of the murine gut microbiota during infection with the parasitic helminth, Heligmosomoides polygyrus. Inflammatory bowel diseases 16 (2010) 1841-1849.
  158. S. Hayes, A.J. Bancroft, M. Goldrick, C. Portsmouth, I.S. Roberts, and R.K. Grencis, Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science (New York, N.Y.) 328 (2010) 1391-4.
  160. B. Wescott, Experimental Nematospiroides dubius infection in germfree and conventional mice. Experimental parasitology 22 (1968) 245-9.
  161. Stefanski, and Z. Przyjalkowski, EFFECT OF ALIMENTARY TRACT MICROORGANISMS ON THE DEVELOPMENT OF TRICHINELLA SPIRALIS IN MICE. I. Experimental parasitology 16 (1965) 167-73.
  162. C. Kotze, J. Ogrady, J.M. Gough, R. Pearson, N.H. Bagnall, D.H. Kemp, and R.J. Akhurst, Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. International journal for parasitology. 35 (2005) 1013-1022.
  163. Hernandez Linares, M.E. Lopez Arellano, P. Mendoza de Gives, E. Liebano Hernandez, and A.B. de la Parra, Lethal activity of two Bacillus thuringiensis strains against Haemonchus contortus histotropic larvae. Annals of the New York Academy of Sciences 1149 (2008) 164-6.
  164. O'Grady, R.J. Akhurst, and A.C. Kotze, The requirement for early exposure of Haemonchus contortus larvae to Bacillus thuringiensis for effective inhibition of larval development. Veterinary parasitology 150 (2007) 97-103.
  165. H. Tirabassi, H.M.F. Madeira, S.P. Fragoso, A.C.S. Umaki, R. Egevardt, T. Melo, J.F. Pereira, V.N. Teixeira, R.D. Ollhoff, and C.S. Sotomaior, Molecular identification of abomasal bacteria associated with genetic resistance and susceptibility to Haemonchus contortus infection in sheep. SCA Semina: Ciências Agrárias 37 (2016) 4097.
  166. Sinnathamby, Bacteria associated with Haemonchus contortus : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University, Palmerston North, New Zealand, 2012.
  167. El-Ashram, and X. Suo, Exploring the microbial community (microflora) associated with ovine Haemonchus contortus (macroflora) field strains. Scientific reports 7 (2017) 70.

[Saeed El-Ashram, Ibrahim Al Nasr, Rashid mehmood, Min Hu, Li He, Xun Suo (2017); NEXT GENERATION SEQUENCING AND MICROBIAL COMMUNITY ASSOCIATED WITH EUKARYOTES INCLUDING PARASITIC HELIMINTHS: A REVIEW ARTICLE. Int. J. of Adv. Res. 5 (Mar). 1003-1022] (ISSN 2320-5407). www.journalijar.com

Saeed El-Ashram


Article DOI: 10.21474/IJAR01/3599      
DOI URL: http://dx.doi.org/10.21474/IJAR01/3599