THE BIOREFINING OF SAUDI ARABIAN WASTE DATE: AN ENVIRONMENTAL PROMISING ALTERNATIVE TO PETROCHEMISTRY.

  • Department of Biology, Faculty of Science and Arts at Buraidah, Qassim University, Saudi Arabia.
  • Laboratory of Biomass Valorisation and Protein Production in Eukaryotes, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3038, Sfax, Tunisia.
  • Departement of mathematic, Faculty of Science at Buraidah, Qassim University, Saudi Arabia. \\
  • Department of Biochemistry, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabi
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Saudi Arabia area is one of the world?s major producers of dates and thus date flesh, pit, and skin are commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of date waste as a source for bioethanol production from the fermentable sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus awamori and Aspergillus niger reported to be producing cellulolytic enzymes were used under co-culture fermentation on waste date to degrade pectin-rich wastes fruit and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was then fermented by Saccharomyces cerevisiae KD2 to produce bioethanol. Fermentation of cellulosic hydrolysate (15%) gave maximum ethanol yield around 95% after 72 h at 35?C and pH5. It was observed that pretreated waste date can be economically utilized as a cheaper substrate for bioethanol production considered as a viable alternative fuel to solve both energy and environmental crises.


  1. Kamm?B., Kamm?M., Gruber?P.R. and Kromus?S. (2006). Biorefinery systems. An overview.In:?Kamm?B., Gruber?P.R. & Kamm?M., eds.? Industrial processes and products.?Statu quo?and future directions. Vol.1. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 3-40.
  2. Kamm?B. and Kamm?M. (2007a). The concept of biorefinery. Production of platform chemicals and final products. Ing. Tech.?79, 592-603.
  3. Kamm?B. and Kamm?M. (2007b). International biorefinery systems.Pure Appl. Chem.?79, 1983-1997.
  4. Demirbas?A. (2009). Biorefineries: current activities and future developments.Energy Convers.?Manage.,?50, 2782-2801.
  5. Cherubini?F. (2010). The biorefinery concept: using biomass instead of oil for producing energy and chemicals.Energy Convers. Manage.,?51, 1412-1421.
  6. Briens?C., Piskorz?J. and Berruti?F. (2008). Biomass valorization for fuel and chemicals production. A review. J. Chem. Reactor Eng.?6,
  7. Kamm?B. and Kamm?M. (2004a). Principles of biorefineries. Microbiol. Biotechnol.?64, 137-145.
  8. Kamm?B.and Kamm?M. (2004b). Biorefinery. Systems. Biochem. Eng. Q.?18, 1-6.
  9. Mandl?M.G. (2010). Status of green biorefining in Europe.Biofuels, Bioprod. Biorefin.?4, 268-274.
  10. Koutinas?A., Wang?R., Campbell?G.M. and Webb?C. (2006). A whole crop biorefinery system: a closed system for the manufacture of non-food products.In:?Kamm?B., Gruber?P.R. & Kamm?M., eds.? Industrial processes and products.?Statu quo?and future directions. Vol.?1. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 165-192.
  11. Demirbas?A. (2010a). Biorefinery.In:?Biorefineries: for biomass upgrading facilities. London: Springer Verlag, 75-92.
  12. Demirbas A. (2010b). Biorefinery technologies for biomass upgrading.Energy Sources Part?A,?32, 1547-1558.
  13. Carvalheiro?F., Duarte?L.C. and Girio?F.M. (2008). Hemicellulose biorefineries: a review on biomass pretreatments. Sci. Ind. Res.,?67, 849-864.
  14. Cheng?S.M. and Zhu?S.D. (2009). Lignocellulosic feedstock biorefinery. The future of the chemical and energy industry.Bioresources,?4, 456-457.
  15. Luo?L., van?der?Voet?E.and Huppes?G. (2010). Biorefining of lignocellulosic feedstock. Technical, economic and environmental considerations. Technol.?101, 5023-5032.
  16. Zhang?Y.H.P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefinerie. Ind. Microbiol. Biotechnol.?35, 367-375.
  17. Kumar?M.N.S., Mohanty?A.K., Erickson?L. and Misra?M. (2009a). Lignin and its applications with polymers. Biobased Mater. Bioenergy,?3, 1-24.
  18. Chandrasekaran, and Bahkali, A H.? (2013). Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology-Review. Saudi Journal of Biological Sciences. 20, 105-120
  19. Barreveld, W. H. (1993). Dates palm products, FAO agricultural services, bulletin No.101.
  20. Cassman, K.G. and A.J. Liska. (2007).Food and fuel for all: Realistic or foolish?. Biofuel. Bioprod. Biorefin., 1, 18-23.
  21. Saha, B.C. (2004).Lignocellulose Biodegradation and Applications in Biotechnology. In: Lignocellulose Biodegradation, Saha, B.C. and K. Hayashi (Eds.). American Chemical Society, Washington, DC., pp: 2-34.
  22. Sharma, S.,?Sharma, V., Kuila, A. (2016). Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 3 Biotech. 6, 139-143.
  23. Gupte A, Madamwar D. (1997). Production of cellulolytic enzymes by coculturing of?Aspergillus eilipticusand?Aspergillus fumigatus?grown on bagasse under solid state fermentation.?Appl Biochem Biotechnol.? 62, 267-274.
  24. Mandel, M. and J. Weber (1969).Exoglucanase activity by microorganisms. Adv. Chem. 95, 391-414.
  25. Brandberg, T. (2005). Fermentation of undetoxified dilute acid lignocellulose hydrolyzate for fuel ethanol production, Chemical Reaction Engineering, Chalmers University of Technology, G?teborg, Sweden,
  26. Maiorella, B. L. (1985). Ethanol, In: Comprehensive Biotechnology, Moo-Young, M. (Ed.), First ed., Oxford: Pergamon Press Ltd.,
  27. Demayer, A., Jacob, F., Jay, M., Menguy, G. and Perrier, J. (1982). La Bioconversion Bio?nerg?tique, Ed. Tech. & Doc., Lavoisier.
  28. Sandesh B., Harinikumar K.M., Ravi K S. and Aditi P. (2014). Optimization of Bioethanol Production from Fruit Wastes using Isolated Microbial Strains. International Journal of Advanced Biotechnology and Research. 5,598-604
  29. Miller, Gail Lorenz. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry. 31, 426-428.
  30. Arthur, C., Ueda M., and Brown T. (1968), Spectrophotometric determination of ethanol in wine." American Journal of Enology and Viticulture 19, 160-165.
  31. Goerging HD, Van Soest JP (1975).?Agri Res Ser.?US Department of Agriculture; Washington, D.C:. Forage fibre analysis.
  32. Reda?M.?El-Shishtawy,A.?Mohamed, A.?M.?Asiri, Abu-bakr?M.?Gomaa, I.?H.?Ibrahim?and Hasan,?A.?A.T. (2015). Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by?Trichoderma virens?under solid state fermentation. BMC Biotechnology.15,37-42.
  33. Marcelle A, Betty-Jayne de Vos, Visser MS. (2007). The preparation, assay and certification of aqueous ethanol reference solutions.?Accred Qual Assur.? 12, 188-193.
  34. Bradford MM. (1976) A rapid sensitive method of quantitation micro gram quantities of proteins utilizing the principles of protein-dye binding.Anal Biochem. 72,248?54.
  35. Ruhul Amin M., Saquib Hossain M., Sarker M. (2013). Simulation of Ethanol Production by Fermentation of Molasses, Journal of Engineering. 4, 69-73.
  36. Alemayehu, G. (2014). Bioethanol Production from Fruit Wastes and Factors Affecting Its Fabrication. I. J. of Chem. and Nat. Sc. 5, 132-140.
  37. Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuel 6:1-10.
  38. Perez, J., J. Munoz-Dorado, T. de la Rubia and J. Martinez. (2002}.Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 5, 53-63.
  39. Hong, S., Ibrahim,?D. ?and?Omar, I.C. (2011). Lignocellulolytic Materials-as a Raw Material for the Production of Fermentable Sugars via Solid State Fermentation. Asian Journal of Scientific Research. 4, 53-61.
  40. Leonel, M., Ortega, G.E., Andrea, K., Astoreca, L. and Alconada,T.M. (2013). Screening ofFusarium graminearum?isolates for enzymes extracellular and deoxynivalenol production Journal of Mycology. 358, 140-147.
  41. Dayanandan, A., Madankumar, A. and Premalatha A. (2015). Enzymatic hydrolysis of alkali pretreated rice straw for the enhanced production of fermentable sugars. Journal of Chemical and Pharmaceutical Research.7, 591-597.
  42. Hong, L.S., Ibrahim, D. and Omar, I.C. (2011). Lignocellulolytic Materials-as a Raw Material for the Production of Fermentable Sugars via Solid State Fermentation.Asian Journal of Scientific Research. 4, 53-61.
  43. Saravanan, R., Darah, I. and Ibrahim, C.O. (2009).Optimization of physical parameter for the production of fermentable sugars using kenaf,?Hibiscus cannabinus?as substrate. Proceedings of the 2nd Collaborative Conference on Life Science: Synergy for Enhancement of Quality of Life, Feb. 10-11, Surabaya, Indonesia, pp: 153-153.
  44. Teoh, C.S., Darah, I., Rashidah, A.R. and Ibrahim, C.O. (2008).Solid state fermentation of rice straw and rice husk for fermentable sugar production. Proceeding of the 6th IMT-GT UNINET Conference on Sustaining Natural Resources Towards Enhancing the Quality of Life within the IMT-GT Zone, Aug. 28-30, Penang, Malaysia, pp: 122-125.
  45. De Souza, D.F., C.G.M. de Souza and R.M. Peralta, 2001.Effect of easily metabolizable sugars in the production of xylanase by?Aspergillus tamarii?in solid state fermentation. Process Biochem., 36, 835-838.
  46. ([46]) Ensinas, A. V., Modesto, M., S. Nebra, A. and Serra, L. (2009). Reduction of irreversibility generation in sugar and ethanol production from sugarcane. 34, 680-688,
  47. Yoon, L.W., Ngoh, G.C. Chua, A.S.M. (2012) Simultaneous production of cellulase and reducing sugar from alkali-pretreated sugarcane bagasse via solid state fermentation. BioResources. 7, 5319-5332.
  48. Kosaric, N. and Velikonja, J. (1995). Liquid and gaseous fuels from biotechnology: challenge and opportunities,?FEMS Microbiology Reviews, 16, 111-142.
  49. Olsson, L. and Hahn-H?gerdal, B. (1993). ?Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates,?Process Biochemistry. 28, 249-257.
  50. Muhammad, I.,Muhammad, N., and?Quratualain, S. (2014). Ethanol production from agricultural wastes using?Sacchromyces cervisae. Braz J Microbiol. 45, 457-465.
  51. Fakruddin,Md. Abdul Quayum,?Monzur Morshed Ahmed?and?Naiyyum Choudhury Analysis of Key Factors Affecting Ethanol Production by?Saccharomyces cerevisiae?IFST-072011.
  52. Gough, S., Flynn, O., Hack, D.J. and Marchant, R. (1996) Fermentation of molasses using a thermotolerant yeast, Klyuyveromyces marxianus IMB3: simplex optimization of media supplements. Appl Microbiol Biotechnol 46, 187-190.
  53. Pramanik, K. (2003). Parametric Studies on Batch Alcohol Fermentation Using Saccharomyces Yeast Extracted from Toddy. J. Chin. Institution Chemistry Engineers. 34, 487-492
  54. Redzepovic, S., Orlic, S., Sikora, S., Majdak, A., Pretorius, I. S. (2002). Identification and characterization of Saccharomyces cerevisiaeand Saccharomyces paradoxusstrains isolated from Croatian vineyards, Whileyinterscience journals, pg. 350
  55. Roehr, M. (2001). The Biotechnology of Ethanol: Classical and Future Applications. Chichester: Wiley-VCH. Pg. 232.
  56. Yadav, A., N. Dilbaghi, and S. Sharma (1997). Pretreatment of sugarcane molasses for ethanol production by yeast, Indian Journal of Microbiology, 37, 37-40.
  57. Yah, C.S., S.E. Iyuke, E.I. Unuabonah, O. Pillay, C. Vishanta and S.M. Tessa. (2010). Temperature optimization for bioethanol production from corn cobs using mixed yeast strains. Journal Biology.Science., 10,103-108.

[Imen Ben Abdelmalek, Abdulhameed Alzaiydi and Abir Ben Bacha. (2017); THE BIOREFINING OF SAUDI ARABIAN WASTE DATE: AN ENVIRONMENTAL PROMISING ALTERNATIVE TO PETROCHEMISTRY. Int. J. of Adv. Res. 5 (Apr). 1250-1261] (ISSN 2320-5407). www.journalijar.com


Dr. Imen Ben Abdelmalek
Department of Biology, Faculty of Science and Arts at Buraidah, Qassim University, Saudi Arabia

DOI:


Article DOI: 10.21474/IJAR01/3942      
DOI URL: https://dx.doi.org/10.21474/IJAR01/3942