20Jun 2017

ANTIDIABETIC ACTIVITY OF THE AQUEOUS EXTRACTS OF SARCOCEPHALUS POBEGUINII (BARKS) AND NAUCLEA DIDERICHII (LEAVES AND BARKS) IN NORMAL AND STREPTOZOTOCIN INDUCED-HYPERGLYCEMIC RATS.

  • Laboratory of natural substances and organometallic synthesis, University of Science and Technique of Masuku, Faculty of Science BP. 943, Franceville, Gabon.
  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.o. Box 812, Cameroon.
  • Department of Biology, University of Science and Technique of Masuku, Faculty of Science BP. 943, Franceville, Gabon.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Nauclea diderrichii (barks and leaves) and Sarcocephalus pobeguinii (barks) used in Gabonese traditional medicine for the management of diabetes have been shown to be potent inhibitor of α-glucosidase. The present study was aimed to evaluate the antidiabetic activity of the aqueous extract of these plants in normal and streptozotocin induced-diabetic rats. Effect of various doses (50-400 mg/kg) of extract was studied on their hypoglycemic activity. Two effective doses were selected to investigate their antidiabetic effect on streptozotocin induced-diabetic rats. Animals received substances at a unique daily dose for two weeks. Blood glucose levels were determined weekly. Several others parameters were evaluated: lipid profile, serum transaminases, total proteins, creatinin, total and direct bilirubin and uric acid. Some oxidative parameters were also measured. In normal rats, all extract reduced blood glucose levels with a marked effect at the dose of 200 mg/kg with Nauclea diderrichii bark. In diabetic rats, Nauclea diderrichii leaf extract (100 mg/kg) brought the blood glucose levels towards normal value and maintained it at the 2nd week. At the dose of 200 mg/kg, the glycaemia returned to the normal value after two weeks post-administration. The administration of streptozotocin induced abnormalities in lipid profile, transaminases, creatinemia and parameters of oxidative stress. Administration of plant extracts improved lipid profile, liver function and antioxidant status of rats. Nauclea diderrichii leaf extract was the most potent extract than Sarcocephalus pobeguinii and Nauclea diderrichii bark extracts. Thus it is concluded from this study that, Nauclea diderrichii aqueous leaves possess a marked potential-antidiabetic activity than other extracts.


  1. Agnaniet, H., Mbot, E.J. Keita O., Fehrentz, J-A., Ankili, G.A.A, et al. (2016): Antidiabetic potential of two medicinal plants used in Gabonese folk medicine. BMC Complement. Altern. Med., 16: 71, DOI 10.1186/s12906-016-1052-x
  2. Adeneye, A.A., Adeyemi O.O., Agbaje, E.O., Sofidiya, M.O. (2012): The novel antihyperglycemic action of Hunteria umbellata seed fractions mediated via intestinal glucose uptake inhibition. Afr J Trad Compl Alt Med., 9(1):17–24.
  3. Cam, C.M., Cros, H.G., Serrano, J.J., Lazaro, R., McNeill, H.J., (1993): In vivo antidiabetic actions of naglivan, an organic vanadyl compound in streptozotocin-induced diabetes. Diabetes Res. Clin. Pract., 20: 111-121.
  4. Dzeufiet, Djomeni, P.D., Tedong, L., Asongalem, E.A., Dimo, T., Sokeng, S.D., Kamtchuing, P. et al. (2006): Hypoglycemic effect of methylene chloride/methanol root extract of Ceiba pentadra in normal and diabetic rats. Indian J. Pharmacol., 38 (3): 194-197.
  5. Gandhi, G.R., Ignacimuthu, S., Paulraj, M.G. (2011): Solanum torvum Swartz fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem Toxicol., 49: 2725
  6. Ganiyu O., Adedayo O.A., Ayodele J.A., Thomas Henleb, J.A.S., Uwe S., (2012)?: Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. J. Funct. Foods, 4 (2): 450-458.
  7. Gao,, Zhao M, Qi X, Liu Y, Li N, Liu Z, Bian, Y. (2016): Hypoglycemic effect of Gynostemma pentaphyllum saponins by enhancing the Nrf2 signaling pathway in STZ-inducing diabetic rats. Arch Pharm Res, 39(2):221-30.
  8. Grover, J.K., Yadav, S., Vats, V. (2002): Medicinal plants of India with anti-diabetic potential. Ethnopharmacol., 81: 81-100.
  9. Hayashi, K., Kojima, R., Ito, M. (2006): Strain differences in the diabetogenic activities of streptozotocin in mice. Biol. Pha Bull., 29: 1110-1119.
  10. Hennebelle, T., Sahpaz, S., Bailleul, F. (2004): Polyphenols vegetaux sources-utilisation et potentiel dans la lutte contre le stress oxydatif. Rev. Phytother., 1: 1-5.
  11. IDF International Diabetes Federation, (2013): Diabetes Atlas. 6th ed. Brussels.1-2
  12. Kesari, A.N., Gupta, R.K., Singh, S.K., Diwakar, S., Watal, G., (2006): Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. Ethnopharmacol., 107: 374-379.
  13. Kwon, S.J., Hwang, S.J., Jung, Y., Park, H.G., Kim, M.H., Park, Y., Lee, H.J. (2017): A synthetic Nitraria alkaloid, isonitramine protects pancreatic β-cell and attenuates postprandial hyperglycemia. , 70:107-115.
  14. Lery, V, Zaltzber, H., Ben-Amotz, A., Kanter, Y., Aviram, M. (1999): Carotene affects antioxidant status in non-insulin dependent diabetes mellitus.Pathophysiology, 6: 157–62.
  15. Menakshi, B., Smita, S.Z., Shobha, Y.B., Ameeta, R., Bimba, N.J. (2011): Antidiabetic Indian Plants: A Good Source of Potent Amylase Inhibitors. Evidence-Based Compl. Alt. Medicine., 1-6.
  16. Montilla, M.P., Agil, A., Navarro, M.C. et al, (2003): Antioxidant activity of Maslinic acid, a Triterpene derivative obtain from Olea europaea. Planta med., 69: 472-474.
  17. Ngueguim, T., F., Dimo, T., Dzeufiet, D.P.D., Vouffo, B., Ndongo, E..R.B, et al. (2007): Antidiabetic activity of methanol-derived extract of dorstenia picta twigs in normal and streptozotocin-induced rats. Asian J. Tradit Med., 2(4).
  18. Pari, L., Saravanan, G. (2002): Antidiabetic effect of Cogent db, a herbal drug in alloxan-induced diabetes mellitus. Biochem. Physiol. Part C, 131: 19-25.
  19. Prinya, W., Jiranun, C., Anis, Z. (2012):In vitro screening of phenolic compounds, potential inhibition against α-amylase and α- glucosidase of culinary herbs in Thailand. Food Chem., 131: 964–971.
  20. Pushparaj, N.P., Tan, H.K.B., Tan H.C. (2001): The mechanism of hypoglycemic action of the semi purified fractions of Averrhoa bilimbi in streptozotocin-diabetic rats. Life Sci., 70: 535-547.
  21. Poitout, V., Robertson, R.P. Minireview: (2002): Secondary beta-cell failure in type 2 diabetes–a convergence of glucotoxicity and lipotoxicity. , 143: 339–42.
  22. Rodrigues, H.G., Diniz, Y. S., Faine, L.A., et al. (2005): Antioxidant effect of saponins: potential action of a soybean flavonoid on glucose tolerance and risk factors for atherosclerosis. Int J food Sci Nutr, 56(2): 79-85.
  23. Sangeetha, M.S., Priyanga, S., Hemmalakshmi, S., Devaki, K. (2014):In vivo antidiabetic potential of Cyclea peltata in streptozotocin-induced diabetic rats. Asian J.Pharm Clin Res., 8(1): 103-108.
  24. Shaw, J.E., Sicree, R.A., Zimmet, P.Z. (2010): Global estimetes of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 87(1): 4-14.
  25. Szkudelski, T., Szkudelska, K. (2011): Anti-diabetic effect of resveratrol. N. Y. Acad. Sci., 125: 34-39.
  26. Takeshika, F., Kodama, M., Yamamoto, H., Ikarashi, Y., Veda, S., Teratani, T., Yamamoto, Y., Tamatani, T., Kanegasaki, S., O’Chiya, T., Quin, G. (2006): Streptozotocin induced partial β-Cell depletion in nude mice without hyperglycemia induces pancreatic morphogenesis in transplanted embryonic stem cells. Diabetologia., 49: 2948-2958.
  27. Vishnu, B., Asuti, N., Kamat, A., Sikarwar, M.S., Patil, M.B. (2010): Antidiabetic activity of insulin plant (Costus igneus) leaf extract in diabetic rats. Pharm. Res., 3(3): 608-611.
  28. Xu, Y.J., Foubert, K., Dhooghe, L., Lemiere, F., Cimanga, K., Mesia, K., et al. (2012): Chromatographic profiling and identification of two new iridoid-indole alkaloids by UPLC-MS and HPLC-SPE-NMR analysis of an antimalarial extract from Nauclea pobeguinii. Lett., 5: 316.
  29. Yao, Y., Cheng, X.Z., Wang, L.X., Wang, S.H., Ren, G. (2012): Major phenolic compounds, antioxidant capacity and antidiabetic potential of Rice bean (Vigna umbellata L.) in China. Int. J. Mol. Sci., 13:2707.

[Mbot Elvis Jolinom, Agnaniet Huguette, Ngueguim Tsofack Florence, Padzys Guy Stephane and Dimo Theophile. (2017); ANTIDIABETIC ACTIVITY OF THE AQUEOUS EXTRACTS OF SARCOCEPHALUS POBEGUINII (BARKS) AND NAUCLEA DIDERICHII (LEAVES AND BARKS) IN NORMAL AND STREPTOZOTOCIN INDUCED-HYPERGLYCEMIC RATS. Int. J. of Adv. Res. 5 (Jun). 974-982] (ISSN 2320-5407). www.journalijar.com


Dimo Theophile
University of Yaounde 1, Faculty of Science

DOI:


Article DOI: 10.21474/IJAR01/4499      
DOI URL: https://dx.doi.org/10.21474/IJAR01/4499