31Aug 2017
SOME CLASSES OF (κ,μ)-CONTACT METRIC MANIFOLD SATISFYING SEMISYMMETRIC CONDITIONS.
- Department of Mathematics, Kuvempu University,Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA.
- Abstract
- References
- Cite This Article as
- Corresponding Author
In the present paper, we consider C-Bochner and m-projective cur-vature tensors in a non-Sasakian (κ,μ)-contact metric manifold. Moreover, we study the curvature tensors satisfying semisymmetric conditions on the same manifold and obtained results.
- Ahmet Yildiz and U. C. De, A classification of -contact metric manifolds, Commun. Korean Math.Soc., 2, 327-339, 2012.
- Blair D. E, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.
- E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 19, 189-214, 1995.
- Boeckx, A full classification of contact metric -spaces, Illinois J. of Math. 44, 212-219, 2000.
- Boeckx, P. Buecken and L. Vanhecke, -symmetric contact metric spaces, Glasg. Math. J. 41(3), 409-416, 1999.
- Chaubey S. K. and Ojha R. H, On the -projective curvature tensor of a Kenmotsu manifold, Differential Geomerty-Dynamical Systems, 12, 52-60, 2010.
- Chaubey S. K, Some properties of LP-Sasakian manifolds equipped with -Projective curvature tensor, Bulletin of Mathematical Analysis and Applications, 3(4), 50-58, 2011.
- C. De and A. A. Shaikh, Sasakian manifolds with -Bochner curvature tensor, Indian J. of Math., 41(2), 131-137,1999.
- Endo, On certain tensor fields on contact metric manifolds II, Publ. Math. Debrecen, 44, 157-166, 1994.
- Ghosh, R. Sharma and J.T. Cho, Contact metric manifolds with -parallel torsion tensor, Ann. Glob. Anal. Geom. 34, 287-299, 2008.
- Jun J. B. Yildiz A. and De U. C, On -recurrent -contact metric manifolds, Bull. Korean Math. Soc. 45, 689-700, 2008.
- S. Kim, M.M. Tripathi and J. Choi, On -Bochner curvature tensor of a contact metric manifold, Bull. Korean Math. Soc., 42(4), 713-724, 2005.
- Kowalski, An explicit classification of -dimensional Riemannian spaces satisfying , Czechoslovak Math. J. 46(121), 3, 427-474, 1996.
- Matsumoto and G. Chuman, On -Bochner curvature tensor, TRU Math., 5, 21-30, 1969.
- Ojha R. H, A note on the -projective curvature tensor, Indian J. pure Applied Math. 8(12), 1531-1534, 1975.
- Ojha R. H, On Sasakian manifold, Kyungpook Math. J., 13, 211-215, 1973.
- Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42, 243-258, 1998.
- Pokhariyal G. P. and Mishra R. S, Curvature tensor and their relativistic significance II, Yokohama Mathematical Journal 19, 97-103, 1971.
- A. Shaikh and K. Kanti Baishya, On -contact metric manifolds, Differential Geometry Dynamical Systems, 8, 253-261, 2006.
- I. Szabo, Structure theorems on Riemannian spaces satisfying . I. The local version, J. Differential Geom. 17(4), 531-582, 1982.
- Takahashi, Sasakian -symmetric spaces, Tohoku Math. J. (2)29, 1, 91-113, 1977.
- Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40, 441-448, 1988.
- Venkatesha and B. Sumangala, On -projective curvature tensor of a generalized Sasakian space form, Acta Math. Univ. Comenianae, Vol. LXXXII, 2, 209-217, 2013.
[Divyashree G. and Venkatesha. (2017); SOME CLASSES OF (κ,μ)-CONTACT METRIC MANIFOLD SATISFYING SEMISYMMETRIC CONDITIONS. Int. J. of Adv. Res. 5 (Aug). 2157-2170] (ISSN 2320-5407). www.journalijar.com
Dr. Venkatesha,
Assistant Professor, Dept of Mathematics, Kuvempu University, Shimoga-577451,INDIA.
Assistant Professor, Dept of Mathematics, Kuvempu University, Shimoga-577451,INDIA.