MEASURING THE EFFICIENCY OF EUROPEAN BANKS: A DIRECTIONAL DISTANCE FUNCTION APPROACH.
- Institut Sup?rieur de Gestion, Universit? de Tunis 41, Rue de la Libert?, Cit? Bouchoucha 2000 Le Bardo, Tunis-TUNISIA Business Analytics and Decision Making (BADEM) Lab.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
The aim of this paper was to estimate the technical efficiency of 423 European banks during the period 2013?2015 while simultaneously dealing with discretionary, non-discretionary, desirable, and undesirable factors. The author used the Directional Distance Function approach. Particularly, he considered the fixed assets as a non-discretionary input and the non-performing loans as an undesirable output. The empirical results revealed significant effects on inefficiency measures in comparison to those obtained when excluding undesirable outputs. Moreover, the outcomes showed an increasing level of the average inefficiency for most European countries. These outcomes confirmed the persistence of the negative impact of the financial crises and the inability of the European banking system to really recover from these crises.
- Aghayi, N., & Maleki, B. (2016). Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry. Energy, 112, 376-387.
- Aktas, R., Acikalin, S., Bakin, B., & Celik, G. (2015). The Determinants of Banks? Capital Adequacy Ratio: Some Evidence from South Eastern European Countries. J. econ. behav. stud., 7, 79-88.
- Assaf, A.G., Matousek, R., & Tsionas, E.G. (2013). Turkish bank efficiency: Bayesian estimation with undesirable outputs. J. Bank. Financ., 37, 506?517.
- Banker, R. D., & Morey, R. C. (1986). Efficiency Analysis for Exogenously Fixed Inputs and Outputs. Oper. Res., 34, 513-521.
- Barros, C.P., Ferreira, C., & Williams, J. (2007). Analyzing the determinants of performance of best and worst European banks: a mixed logit approach. J. Bank. Financ., 31, 2189?2203.
- Barros, C. P., Managi, S., & Matousek, R. (2012). The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output. Omega, 40, 1-8.
- Berger, A. N., & Humphrey, D. B. (1997). Efficiency of financial institutions: international survey and directions for future research. Eur. J. Oper. Res., 98, 175-212.
- Berger, A. N., & Mester, L. J. (2003). Explaining the dramatic changes in the performance of US banks: technological change, deregulation, and dynamic changes in competition. J. Finan. Intermed., 12, 57-95.
- Casu, B., & Molyneux, P. (2003). A comparative study of efficiency in European banking. Appl. Econ., 35, 1865-187.
- Cheng, G., & Zervopoulos, P. D. (2014). Estimating the technical efficiency of health care systems: a cross-country comparison using the directional distance function. Eur. J. Oper. Res., 238(3), 899-910.
- Chung, Y., Fare, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. J Environ Manage., 51, 229?240.
- Curi, C., Guarda, P., Lozano-Vivas, A., & Zelenyuk, V. (2013). Is foreign-bank efficiency in financial centers driven by home or host country characteristics. J. Prod. Anal., 40, 367-385.
- Degl'Innocenti, M., Kourtzidis, S. A., Sevic, Z., & Tzeremes, N. G. (2017). Investigating bank efficiency in transition economies: A window-based weight assurance region approach. Econ. Model., 67, 23-33.
- Drake, L., & Hall, M. J. B. (2003). Efficiency in Japanese banking: An empirical analysis. J. Bank. Financ., 27, 891?91.
- Eskelinen, J. (2017). Comparison of variable selection techniques for data envelopment analysis in a retail bank. Eur. J. Oper. Res., 259 (2), 778-788.
- F?re, R., Grosskopf, S., & Weber, W. L. (2004). The effect of risk-based capital requirements on profit efficiency in banking. Appl. Econ., 36, 1731-1743.
- F?re, R., & Grosskopf, S. (2006). Resolving a strange case of efficiency. J Oper Res So, 57, 1366?1368.
- Fethi, M. D., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. Eur. J. Oper. Res., 204, 189?198.
- Fujii, H., Managi, S., Matousek, R., & Rughoo, A. (2018). Bank efficiency, productivity, and convergence in EU countries: a weighted Russell directional distance model. Europ. J. Finance, 24(2), 135-156.
- Fujii, H., Managi, S., & Matousek, R. (2014). Indian Bank Efficiency and Productivity Changes with Undesirable Outputs: A Disaggregated Approach. J. Bank. Financ., 38, 41-50.
- Fukuyama, H., & Weber, W. L. (2008). A directional slacks-based measure of technical inefficiency. Socio. Econ. Plan. Sci., 43, 274-287.
- Gishkori, M. A., & Ullah, N. (2013). Technical Efficiency of Islamic and Commercial Banks: Evidence from Pakistan Using DEA Model (2007-2011). J. Bus. Manag., 7, 68-76.
- Glass J. C., McKillop D. G., Quinn B., & Wilson J. (2014). Cooperative bank efficiency in Japan: A parametric 19 distance function analysis. Europ. J. Finance., 20, 291-317.
- Hamid, N., Ramli, N. A., & Hussin, S. A. S. (2017). Efficiency measurement of the banking sector in the presence of non-performing loan. AIP Conference Proceedings 1795(1).
- Huang, T. H., Chiang, D. L., & Tsai, C. M. (2015). Applying the new metafrontier directional distance function to compare banking efficiencies in Central and Eastern European countries. Econ. Model., 44, 188-199.
- Huang, T. H., & Chung, M. T. (2017). Do undesirables matter on examination of banking efficiency using stochastic directional distance functions. Quart. Rev. Econ. Finance, 65, 194-211.
- Hughes, J., & Mester, L. J. (2015). Measuring the performance of banks: Theory, practice, evidence, and some policy implications. In A.N. Berger, P. Molyneux and J.O.S. Wilson (Eds.), Oxford handbook of banking (2nd ed.) (p. 247?270). Oxford: Oxford University Press.
- Hunter, W. C., & Timme, S. G. (1995). Core Deposits and Physical Capital: A Reexamination of Bank Scale Economies and Efficiency with Quasi-Fixed Inputs. J. Money Credit Bank., 27, 165-185.
- Jayaraman, A. R., & Srinivasan, M. R. (2014). Analyzing profit efficiency of banks in India with undesirable output ? Nerlovian profit indicator approach. IIMB Manage. Rev, 26, 222-233.
- Kamarudin, F., Sufian, F., Loong, F. W., & Anwar, N. A. M. (2017). Assessing the domestic and foreign Islamic banks efficiency: Insights from selected Southeast Asian countries. Future Bus. J., 3(1), 33-46.
- Kevork, I. S., Pange, J., Tzeremes, P., & Tzeremes, N. G. (2017). Estimating Malmquist productivity indexes using probabilistic directional distances: An application to the European banking sector. Eur. J. Oper. Res., 261(3), 1125-1140.
- Lee, C. C., & Huang, T. H. (2017). Cost efficiency and technological gap in Western European banks: A stochastic metafrontier analysis. Int. Rev. Econ. Financ., 48, 161-178.
- Lozano, S. (2016). Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. Omega, 60, 73-84.
- Mamatzakis, E., Matousek, R., & Vu, A. N. (2016). What is the impact of bankrupt and restructured loans on Japanese bank efficiency? J. Bank. Financ., 72, 5187-5202.
- Mavi, R. K., Kazemi, S., & Jahangir, J. M. (2013). Developing Common Set of Weights with Considering Nondiscretionary Inputs and Using Ideal Point Method. J. Appl. Math., 2013, Article ID 906743, 9 pages.
- Menicucci, E., &?Paolucci, G. (2016). The determinants of bank profitability: empirical evidence from European banking sector.?J. Financ. Reporting Accounting, 14, 86-115.
- Pan, S. C., Peng, C. J., & Wu, P. C. (2010). Another Method to Deal with Undesirable Outputs in Data Envelopment Analysis. The Empir. Econ Lett., 9, 1681-8997.
- Pasiouras, F., Sifodaskalakis, E., & Zopounidis, C. (2011). The cost efficiency of Greek cooperative banks: an application of two-stage data envelopment analysis. Int. J. Financ Services Manag., 5(1), 34-51.
- Raphael, G. (2013). Bank-specific, industry-specific and macroeconomic determinants of bank efficiency in Tanzania: A two stage analysis. Eur. J. Bus. Manag., 5, 2222-2839.
- Rouse, P., Putterill, M., & Ryan, D. (1996). Methodologies for the treatment of environmental factors in DEA. Department of Accounting and Finance. New Zealand: University of Auckland.
- Scheel, H. (2000). Undesirable outputs in efficiency valuations. Eur. J. Oper. Res., 132, 400-410.
- EBF Facts & Figures (2015). European Banking Federation aisbl.
- Subramanyam, T. (2016). Selection of Input-Output Variables in Data Envelopment Analysis - Indian Commercial Banks. Int. J. Comput. Sci. Math. Sci., 5, 2347 ? 8527.
- Sufian, F. (2007). The efficiency of Islamic banking industry: A non-parametric analysis with non-discretionary input variable. Islamic Econ. Stud., 14, No. 1 & 2.
- Tan, Y., & Anchor, J. (2017). The impacts of risk-taking behaviour and competition on technical efficiency: evidence from the Chinese banking industry. Res. Inter. Bus. Finance, 41, 90-104.
- Tsionas, E.G., Assaf, A.G., & Matousek, R. (2015). Dynamic Technical and Allocative Efficiencies in European Banking. J. Bank. Financ., 52, 130-139.
[Sonia Rebai (2018); MEASURING THE EFFICIENCY OF EUROPEAN BANKS: A DIRECTIONAL DISTANCE FUNCTION APPROACH. Int. J. of Adv. Res. 6 (Oct). 940-951] (ISSN 2320-5407). www.journalijar.com
Institut Superieur de Gestion, Universite de Tunis