08Nov 2018

COPPER BIOSORPTION ON ARGAN NUT SHELL: KINETIC AND THERMODYNAMIC STUDIES.

  • Laboratory Physico-Chemistry of Materials, Natural Substances and Environment, Department of Chemistry, Faculty of Sciences and Techniques, Abdelmalek Essa?di University, Tangier (Morocco).
  • Laboratory of Mathematics and Applications, Mathematics Department, Faculty of Sciences and Techniques, Abdelmalek Essa?di University, Tangier (Morocco).
  • Laboratoire de Spectroscopie, Mod?lisation Mol?culaire, Mat?riaux et Environnement (LS3ME), Faculty of Sciences, Mohammed V-Agdal University, Rabat (Morocco).
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

This work studies the adsorption of copper from aqueous solutions using Argan nut shell (ArNS) powders. ArNS was characterized by different techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and BET. The fractal-like kinetic models, and their classical counterparts, have been used to describe the kinetic adsorption of copper on ArNS. The modeling results show that the fractal-like kinetic models fit properly the kinetic data in comparison with the classical models. Thermodynamic quantities, such as Gibbs free energy (∆G?), the enthalpy (∆H?) and the entropy change of sorption (∆S?) have also been evaluated and it has been found that the sorption process was feasible, spontaneous and endothermic in nature. The reported findings indicate that Argan nut shell could be employed as a low-cost alternative adsorbent for efficient removal of copper ions from aqueous solutions.


  1. ?etinkaya D?nmez, Z. Aksu, A. ?zt?rk and T. Kutsal, A comparative study on heavy metal biosorption characteristics of some algae, Process Biochem. 34 (1999) 885-892.
  2. Caetano, C. Valderrama, A. Farran and J.L. Cortina, Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins, J. Colloid. Interf. Sci. 338 (2009) 402-409.
  3. Visa, Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment, Powder Technol. 294 (2016) 338-347.
  4. Bl?zquez, M. Mart?n-Lara, E. Dionisio-Ruiz, G. Tenorio and M. Calero, Copper biosorption by pine cone shell and thermal decomposition study of the exhausted biosorbent, J. Ind. Eng. Chem. 18 (2012) 1741-1750.
  5. Kołodyńska, M. Kowalczyk and Z. Hubicki, Evaluation of iron-based hybrid materials for heavy metal ions removal, J. Mater. Sci. 49 (2014) 2483-2495.
  6. Lagergren, A bout thetheory of so-called adsorption of soluble substances, K. Svenska Vetenskapsakad. Handl. 24 (1898) 1-39.
  7. S. Ho and G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res. 34 (2000) 735-742.
  8. Kopelman, Fractal Reaction Kinetics, Science 241 (1988) 1620-1626.
  9. Xie, R. Deng, Y. Pang, Y. Bai, W. Zheng and Y. Zhou, Adsorption of copper(II) by sulfur microparticles, Chem. Eng. J. 314 (2017) 434-442.
  10. Montagnaro and M. Balsamo, Deeper insights into fractal concepts applied to liquid-phase adsorption dynamics, Fuel Process Technol. 128 (2014) 412-416.
  11. Haerifar and S. Azizian, Fractal-Like Kinetics for Adsorption on Heterogeneous Solid Surfaces, J. Phys. Chem. C. 118 (2014) 1129-1134.
  12. Gaspard, S. Altenor, N. Passe-Coutrin, A. Ouensanga and F. Brouers, Parameters from a new kinetic equation to evaluate activated carbons efficiency for water treatment, Water Res. 40 (2006)3467-3477.
  13. Arrhenius, ?ber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch S?uren, Z. Phys. Chem. 4 (1889) 226-248.
  14. C. Nebaghe, Y. El Boundati, K. Ziat, A. Naji, L. Rghioui and M. Saidi, Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper(II) onto treated Martil sand, Fluid Phase Equilibr. 430 (2016) 188-194.
  15. Nilchi, R. Saberi, M. Moradi, H. Azizpour and R. Zarghami, Adsorption of cesium on copper hexacyanoferrate PAN composite ion exchanger from aqueous solution, Chem. Eng. J. 172 (2011) 572-580.
  16. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zhang, Z. Lei and Y. Yang, Adsorption of cesium from aqueous solution using agricultural residue Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies, Water Res. 47 (2013) 2563-2571.
  17. Arivalagan, D. Singaraj, V. Haridass and T. Kaliannan, Removal of cadmium from aqueous solution by batch studies using Bacillus cereus, Ecol. Eng. 71 (2014) 728-735.
  18. Liu, Z.-Q. Chen, B. Han, C.-L. Su, Q. Han and W.-Z. Chen, Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies, Ecotox. Environ. 150 (2018) 251-259.
  19. -S. Zhu, L.-P. Wang and W.-b. Chen, Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull, J. Hazard. Mater. 168 (2009) 739-746.
  20. Hameed, D. Mahmoud and A. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, J. Hazard. Mater. 158 (2008) 65-72.
  21. Senthilkumar, S. Ramalingam, V. Sathyaselvabala, S. D. Kirupha and S. Sivanesan, Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell, Desalination 266 (2011) 63-71.
  22. -S. Cao, J.-X. Lin, F. Fang, M.-T. Zhang and Z.-R. Hu, A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies, Bioresource Technol. 163 (2014) 199-205.
  23. V?zquez, M. Calvo, M. Sonia Freire, J. Gonz?lez-Alvarez and G. Antorrena, Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal, J. Hazard. Mater. 172 (2009) 1402-1414.
  24. C. Nebagha, K. Ziat, L. Rghioui, M. Khayet, A. Naji and M. Saidi, Adsorptive removal of copper(II) from aqueous solutions using low cost Moroccan adsorbent. Part I: Parameters influencing Cu(II) adsorption, J. Mater. Environ. Sci. 6 (2015) 3022-3033.
  25. Haerifar and S. Azizian, Fractal-Like Adsorption Kinetics at the Solid/Solution Interface, J. Phys. Chem. C. 116 (2012) 13111-13119.
  26. Marczewski, M. Seczkowska, A. Deryło-Marczewska and M. Blachnio, Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: effect of temperature, Adsorption 22 (2016) 777-790.
  27. -M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J.-Y. Wang and E. Gidarakos, Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products, J. Environ. Manage. 96 (2012) 35-42.
  28. ?z?imen and A. Ersoy-Meri?boyu, Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons, J. Hazard. Mater. 168 (2009) 1118-1125.
  29. A. Ali, O.C.S. Al Hamouz and N. M. Hassan, Novel cross-linked polymers having pH-responsive amino acid residues for the removal of Cu2+ from aqueous solution at low concentrations, J. Hazard. Mater. 248-249 (2013) 47-58.

[Youssef El Boundati, Khadija Ziat, Ahmed Naji, Mohamed Saidi and Lotfi Rghioui. (2018); COPPER BIOSORPTION ON ARGAN NUT SHELL: KINETIC AND THERMODYNAMIC STUDIES. Int. J. of Adv. Res. 6 (Nov). 300-309] (ISSN 2320-5407). www.journalijar.com


Khadija Ziat
Laboratory Physico-Chemistry of Materials, Natural Substances and Environment, Department of Chemistry, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier (Morocco)

DOI:


Article DOI: 10.21474/IJAR01/7999      
DOI URL: https://dx.doi.org/10.21474/IJAR01/7999