THROMBIN ENHANCES OVALBUMIN-SPECIFIC IGA IN MUCOSAL SURFACES BY INTRANASAL ADMINISTRATION IN MICE.
- Development department, kikuchi research center, km biologics co., ltd., 1314-1 kyokushikawabe, kikuchi-city, kumamoto 869-1298, japan.
- Department of medical technology, kumamoto health science university, 325 izumi-machi, kita-ku, kumamoto-city, kumamoto 861-5598, japan.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
Thrombin plays a central role in blood coagulation. In addition, thrombin is an important inflammatory mediator that activates T lymphocytes and monocytes and induces the release of proinflammatory cytokines in vitro. However, it has not been clarified whether thrombin can inducethe production ofantibodies against antigens in vivo; i.e., it is not known whether thrombin has an adjuvant effect to enhance immune responses. In the present study in mice, intranasally administered thrombin plus ovalbumin enhanced not only antigen-specificIgG in blood but also antigen-specificIgA on mucosa in the nasal cavity and intestine. IgA plays a major role in protecting against infection by preventing pathogens from invading the body through mucous membranes. This study provides new information regarding thrombin as an adjuvant of mucosal immunity.
- Antoniak, S. (2018): The coagulation system in host defense. Res. Pract. Thromb. Haemost., 2: 549-557.
- Antoniak, S., Owens, A.P. 3rd, Baunacke, M., Williams, J.C., Lee, R.D., Weith?user, A., Sheridan, P.A., Malz, R., Luyendyk, J.P., Esserman, D.A., Trejo, J., Kirchhofer, D., Blaxall, B.C., Pawlinski, R., Beck, M.A., Rauch, U. and Mackman, N. (2013): PAR-1 contributes to the innate immune response during viral infection. J. Clin. Invest., 123: 1310-1322.
- Antoniak, S., Tatsumi, K., Bode, M., Vanja, S., Williams, J.C. and Mackman, N. (2017): Protease-activated receptor 1 enhances poly I:C induction of the antiviral response in macrophages and mice. J. Innate Immun., 9: 181-192.
- Boyaka, P.N. (2017): Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems. J. Immunol., 199: 9-16.
- Christensen, D. (2016): Vaccine adjuvants: why and how. Hum. Vaccin. Immunother., 12: 2709-2711.
- Elson, C.O., Ealding, W. and Lefkowitz, J. (1984): A lavage technique allowing repeated measurement of IgA antibody in mouse intestinal secretions. J. Immunol. Methods, 67: 101-108.
- Esmon, C.T. (1995): Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J., 9: 946-955.
- Fenton, J.W. 2nd. (1988): Regulation of thrombin generation and functions. Semin. Thromb. Hemost., 14: 234-240.
- Grand, R.J.A., Turnell, A.S. and Grabham P.W. (1996): Cellular consequences of thrombin-receptor activation. Biochem. J., 313: 353-368.
- Hansson, K.M., Lindblom, A., Elg, M. and L?vgren, A. (2016): Recombinant human prothrombin (MEDI8111) prevents bleeding in haemophilia A and B mice. Haemophilia, 22: 453-461.
- Hoyer, L.W. and Trabold, N.C. (1981): The effect of thrombin on human factor VIII. Cleavage of the factor VIII procoagulant protein during activation. J. Lab. Clin. Med., 97: 50-64.
- Ishihara, H., Connolly, A.J., Zeng, D., Kahn, M.L., Zheng, Y.W., Timmons, C., Tram, T. and Coughlin, S.R. (1997): Protease-activated receptor 3 is a second thrombin receptor in humans. Nature, 386: 502-506.
- Johnson, K., Choi, Y., DeGroot, E., Samuels, I., Creasey, A. and Aarden, L. (1998): Potential mechanisms for a proinflammatory vascular cytokine response to coagulation activation. J. Immunol., 160: 5130-5135.
- Kaur, J., Woodman, R.C., Ostrovsky, L. and Kubes, P. (2001): Selective recruitment of neutrophils and lymphocytes by thrombin: a role for NF-κ Am. J. Physiol. Heart Circ. Physiol., 281: H784-H795.
- Lorand, L. and Konishi, K. (1964): Activation of the fibrin stabilizing factor of plasma by thrombin. Arch. Biochem. Biophys., 105: 58-67.
- Naldini, A., Aarden, L., Pucci, A., Bernini, C. and Carraro, F. (2003): Inhibition of interleukin-12 expression by a-thrombin in human peripheral blood mononuclear cells: a potential mechanism for modulating Th1/Th2 responses. Br. J. Pharmacol., 140: 980-986.
- Naldini, A., Carney, D.H., Bocci, V., Klimpel, K.D., Asuncion, M., Soares, L.E. and Klimpel, G.R. (1993): Thrombin enhances T cell proliferative responses and cytokine production. Cell Immunol., 147: 367-377.
- Naldini, A., Morena, E., Filippi, I., Pucci, A., Bucci, M., Cirino, G. and Carraro, F. (2006): Thrombin inhibits IFN-gamma production in human peripheral blood mononuclear cells by promoting a Th2 profile. J. Interferon Cytokine Res., 26: 793-799.
- Nesheim, M.E. and Mann, K.G. (1979): Thrombin-catalyzed activation of single chain bovine factor V. J. Biol. Chem., 254: 1326-1334.
- Takagi, T. and Doolittle, R.F. (1974): Amino acids sequence studies on factor XIII and the peptide released during its activation by thrombin. Biochemistry, 13: 750-756.
- Tordai, A., Fenton, J.W. 2nd, Andersen, T. and Gelfand, E.W. (1993): Functional thrombin receptors on human T lymphoblastoid cells. J. Immunol., 150: 4876-4886.
- Vu, T.K., Hung, D.T., Wheaton, V.I. and Coughlin, S.R. (1991): Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64: 1057-1068.
- Woof, J.M. and Mestecky, J. (2005): Mucosal immunoglobulins. Immunol. Rev., 206: 64-82.
- Yonemura, H., Imamura, T., Soejima, K., Nakahara, Y., Morikawa, W., Ushio, Y., Kamachi, Y., Nakatake, H., Sugawara, K., Nakagaki, T. and Nozaki, C. (2004): Preparation of recombinant a-thrombin: high-level expression of recombinant human prethrombin-2 and its activation by recombinant ecarin. J. Biochem., 135: 577-582.
[Kazuyoshi Kaminaka and Chikateru Nozaki. (2019); THROMBIN ENHANCES OVALBUMIN-SPECIFIC IGA IN MUCOSAL SURFACES BY INTRANASAL ADMINISTRATION IN MICE. Int. J. of Adv. Res. 7 (Apr). 1-6] (ISSN 2320-5407). www.journalijar.com
KM Biologics Co., Ltd