22Jun 2019

OPTIMIZATION BY FULL FACTORIAL DESIGN OF LEAD ADSORPTION CONDITIONS ON ACTIVATED CARBONS FROM COCONUT SHELLS.

  • Universite Nangui Abrogoua, Unite de Formation et de Recherche Sciences et Gestion de lEnvironnement, Laboratoire des Sciences de lEnvironnement, 02 BP 801 Abidjan 02, Cote dIvoire.
  • Laboratoire National dAppui au Developpement Agricole (LANADA), 04 BP 612 Abidjan 04, Cote dIvoire.
  • Universite Jean Lorougnon GUEDE, Unite de Formation et de Recherche Environnement, Laboratoire des Sciences et Technologie de lEnvironnement, BP 150 Daloa, Cote dIvoire.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Adsorption of heavy metals on activated carbons is influenced by various factors that must be controlled. This study investigates the optimal conditions for removal lead on activated carbon using experimental designs. Thus, influence of three parameters (pH, lead concentration and activated carbon) on adsorption rate was studied. Activated carbons was prepared from coconuts shells of C?te d?Ivoire by using chemical activation method. pH, lead concentration and coal nature are the factors considered in the two-level complete factorial plan used for optimization. values of lead elimination rate are between 87 % and 96 % thus indicating pertinence of choice of the experimental domain. Moreover, two of the three factors; pH and lead concentration have a significant influence on the lead removal rate. Also, interactions between carbon type and lead concentration and those between pH and concentration have a significant influence on adsorption. Thus, the optimal adsorption conditions of 50 mL of lead at 150 mg / L of concentration are obtained with 0.3 g of activated carbon, at pH 6 and at a temperature of 25 ? C. Experimental designs therefore make it possible to optimize lead removal conditions from wastewater.


  1. Demim S., Drouiche N., Aouabed A., Benayad T., Dendene-Badache O. and Semsari S. (2013): Cadmium and nickel: assessment of the physiological effects and heavy metal removal using a response surface approach by L. Gibba. Ecological Engineering. 61: 426?435.
  2. Song X. L., Liu H. Y., Cheng L., and Qu Y. X. (2010): Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption. Desalination. 255: 78?83.
  3. Yobouet Y. A., Aboua K. N., Adoubi K. et Yao K. B. (2018): ?limination du plomb et du cuivre en solution aqueuse par des charbons ? base de bois de Pterygota macrocarpa. Afrique Science. 14 (2)?: 38? 47.
  4. Gbamele K. S., Atheba G. P., Dongui B. K., Drogui P., Robert D., Kra O. D., Konan S., De Bouanzi G. G. M.?et Trokourey A. 2016. Contribution ? l??tude de quatre charbons activ?s ? partir des coques de noix de coco. Afrique Science. 12(5)?: 229?245.
  5. Murat M. N., Ahmad M. A. and Idris M. N. 2018. Optimization of preparation conditions for rice husk based activatedcarbons for the removal of methylene blue dye. ?International Journal?of?Petrochemistry?and?Research. 2(2)?: 186-188.
  6. Tchakala I.?, Bawa L. M.?, Djaneye-Boundjou G., Doni K. S. et Nambo P. (2012): Optimisation du proc?d? de pr?paration des Charbons Actifs par voie chimique (H3PO4) ? partir des tourteaux de Karit? et des tourteaux de Coton. ?International Journal of?Biological and?Chemical?Sciences. 6(1)?: 461-478.
  7. Aboua K. N., Yao K. B., Gueu S. and Trokourey A. (2010): Production of activated carbon from biomass resources ? optimization using experimental designs. Research?Journal of Biological Sciences. 6(6): 665-670.
  8. Me Convey I. F. and Me Kay G. (1985): Mass transfer model for the adsorption of basic dyes on woodmeal in agitated batch adsorbers. Chemical Engineering?and?Processing. 19: 267-275.
  9. Mazet M.?, Dusart O., Roger M. et Dussoubs-Marmier D. (1990): Elimination de colorants de l'industrie textile par des sciures de bois. Journal of Water Science. 3: 129-149.
  10. Gueye M. (2015): D?veloppement de charbon actif ? partir de biomasses lignocellulosiques pour des applications dans le traitement de l?eau??, Th?se de l?Institut International de l?Ing?nierie de l?Eau et l?Environnement (2IE), Ouagadougou, Burkina Faso. 215p.
  11. Maazou S. D. B., Hima H. I., Malam Alma M. M., Adamou Z. et Natatou I. (2017): Elimination du chrome par du charbon actif ?labor? et caract?ris? ? partir de la coque du noyau de Balanites Aegyptiaca. International Journal of?Biological and?Chemical?Sciences. 6(1)?: 3050-3065.
  12. Avom J., Ketcha M. J., Matip M. R. L. and Germain P. (2001): Adsorption isotherme de l?acide ac?tique par des charbons d?origines v?g?tale. African Journal of Science and Technology (AJST). Science and engineering Series. 2(2)?: 1-7.
  13. Feinberg M. (1996): La validation des M?thodes d?Analyse : Une Approche Chimiom?trique de l?assurance qualit? au laboratoire. Masson, Paris, France. 217-239.
  14. Massart D. L., Vandeginste B. G. M., Deming S. N., Michotte Y. and Kaufman L. (1988): Chimiometrics : A Texbook. Elsevier, Amsterdam, Holland. 2(4): 298-299.
  15. Mathieu D., J. Nony et R. Phan-Tan-Luu, ??Nemrod-W : G?n?ration des matrices d?exp?riences en fonction des objectifs et traitement des r?ponses exp?rimentales??, Version 9901.
  16. Choumane F. Z. (2016): Elimination des m?taux lourds et pesticides en solution aqueuse par des matrices argileuses. Th?se de doctorat de Universit? Abou Bekr Belkaid, Tlemcen, R?publique Alg?rienne D?mocratique et Populaire.
  17. Depci T., Kul R. A. and ?nal Y. (2012): Competitive Adsorption of Lead and Zinc from Aqueous Solution on Activated Carbon Prepared from Van Apple Pulp: Study in Single- and Multi-Solute Systems. Chemical Engineering Journal. 200-202, pp. 224-236.
  18. Gueu S., Yao K. B., Adouby K. et Ado G. (2006): Elimination des m?taux lourds des eaux avec le charbon actif pr?par? ? partir de noix de coco et de graine de palmiste. 9?mes Journ?es Anuelles de la Soci?t? Ouest-Africaine de Chimie, Dakar, S?n?gal.
  19. Zeroual S., Guerfi K., Hazourli?S. et Charnay C. (2011): Estimation de l?h?t?rog?n?it? d?un charbon actif oxyd? ? diff?rentes temp?ratures ? partir de l?adsorption des mol?cules sondes. Revue des Energies Renouvelables. 14 (4)?: 581-590.
  20. Mamane S. O., Zanguina A., Daou I.?et Natatou I. (2016): Pr?paration et caract?risation de charbons actifs ? base de coques de noyaux de Balanites Eagyptiaca et de Zizyphus Mauritiana??, Journal de la Soci?t? Ouest-Africaine de Chimie. 041: 59- 67.
  21. Khattria S. D. and Singh M. K. (2009): Removal of malachite green from dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials. 167: 1089-1094.
  22. Bouhamed F., Elouear Z., Bouzid J. and Ouddane B. (2013): Batch sorption of Pb (II) ions from aqueous solutions using activated carbon prepared from date stones: equilibrium, kinetic, and thermodynamic studies. Desalination and Water Treatment. 52(10-12): 2261-2271.
  23. Mohanty K., Das D., Biswas M. N. (2005): Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl. Chemical Engineering Journal. 115: 121?131.
  24. Assidjo E., Yao B., Akou E. and Ado G. (2005): Optimization of the treatment conditions of cocoa butter in order to reduce non-quality. J. Chemometrics. 19 : 543-548.
  25. Hamane?D. et Bendjama Z. (2005): Adsorption de Pb (II) par la Sciure de Bois d?Eucalyptus. R?cents. Progr?s en G?nie des Proc?d?s. 92.
  26. Arris S. (2008): Etude Exp?rimentale de l?Elimination des Polluants Organiques et Inorganiques par Adsorption sur des Sous-Produits de C?r?ales. Th?se de Doctorat, Facult? des Sciences de l'Ing?nieur. Constantine, Alg?rie, 151p.
  27. Boudrahem F., Aissani-Benissad F. and Soualah A. (2011): Adsorption of Lead (II) from Aqueous Solution by Using Leaves of Date Trees As an Adsorbent. Journal of Chemical and Engineering Data. 56: 1804?1812.
  28. Marin J. et Ayele J. (2002): Removal of some heavy metal cations from aqueous solutions by spruce sawdust. I. Study of the binding mechanism through batch experiments??, Environmental Technology. 23: 1157-1171.
  29. Mouni L., Belkhiri L., Zouggaghe F. and Tafer M. (2014): Removal of Pb (II) from aqueous solution by adsorption using activated carbon developed from Apricot stone: equilibrium and kinetic. Desalination and Water Treatment. 52(34-36): 6412-6419.
  30. Knappe D. R. U, Matsui Y. and Snoeyink V. L. (1998): Predicting the capacity of Powdered Activated Carbon for trace organic compounds in natural waters. Environmental science & technology. 32(11): 1694-1698.

[Kouassi Narcisse Aboua, Kossonou Roland NGuettia, Moussa Diarra, Kouadio Dibi, Donafologo Baba Soro, Ladji Meit, Mamadou Kone and Karim Sory Traore. (2019); OPTIMIZATION BY FULL FACTORIAL DESIGN OF LEAD ADSORPTION CONDITIONS ON ACTIVATED CARBONS FROM COCONUT SHELLS. Int. J. of Adv. Res. 7 (Jun). 998-1007] (ISSN 2320-5407). www.journalijar.com


Kouassi Narcisse ABOUA
Université Nangui Abrogoua, Unité de Formation et de Recherche Sciences et Gestion de l’Environnement, Laboratoire des Sciences de l’Environnement, 02 BP 801 Abidjan 02, Côte d’Ivoire

DOI:


Article DOI: 10.21474/IJAR01/9304      
DOI URL: https://dx.doi.org/10.21474/IJAR01/9304