22Dec 2019


  • Senior Assistant, Faculty of Education, University Dzemal Bijedic in Mostar, University Campus bb, 88000 Mostar, Bosnia and Herzegovina
  • Associate Professor, Department of Physical Chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Univerzitetska 8, 75000 Tuzla, Bosnia and Herzegovina
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

A typical liquid soap is composed of a mixture of different types of surfactants to achieve the desired cleaning and foaming properties. Several thermodynamic and transport properties of surfactant solutions are affected by the size and shape of micelles. Only surfactant monomers contribute to lowering the surface and interfacial tension, while wetting and foaming properties are governed by the concentration of free monomers in solution. The success of surfactants formulation in a liquid soap is reflected on physical stability of the final product, mildness, wetting, foam volume and foam stability. Furthermore, this study reveals that when amphoteric and nonionic surfactants are used with anionic surfactants, foaming of the formulations are improved. Amphoteric surfactants have antibacterial properties, low toxicity, excellent resistance to hard water, and is suitable with various kinds of surfactants. Mixing anionic and cationic surfactants is not recommended. The aim of this paper is to show the influence of individual surfactants and their mixtures on the final properties of liquid soaps as well as the antimicrobial activity of surfactants and the advantages of biosurfactants. The highest antimicrobial activity is reported for surfactants containing 10-14 carbon atoms in their chain. The toxicity of cationic surfactants is the highest, then follow anionic and the last one is nonionic. Biosurfactants show the same functionality as the chemical synthetized surfactants, but biosurfactants are more environmentally friendly, with lower toxicity and biodegradable ability.

  1. Akbari S., Nour A. H., Yunus R. M., Farhan A. H. (2018). Biosurfactants as promising multifunctional agent: A mini review, International Journal of Innovative Research and Scientific Studies, 1 (1):1-6.
  2. Anachkov S. E., Georgieva G. S., Abezgauz L., Danino D., Kralchevsky P. A. (2018). Viscosity Peak due to Shape Transition from Wormlike to Disklike Micelles: Effect of Dodecanoic Acid, Langmuir, 34 (16), 4897-4907.
  3. Ara T., Laway G. N., Deva A. S., Deva B., Bhatia N., Khan R. A. (2018). Hazardous effects of sodium lauryl sulfate and sodium laureth sulfate, An overview, World Journal of Pharmacy and Pharmaceutical Sciences, 7(5): 282-292.
  4. Azeez O. S. & Abegunde G. S. (2016). Production and characterization of liquid detergents from some agricultural waste products, Nigerian Journal of Technology, 35, (1) 60 ? 65.
  5. Barmentlo SH, Stel JM, van Doorn M. (2015). Acute and chronic toxicity of short chained perfluoroalkyl substances to Daphnia magna, Environ Pollut., 198: 47?53.
  6. Bhattacharya B., Ghosh T.K., Das N. (2017). Application of Bio-Surfactants in Cosmetics and Pharmaceutical Industry, Sch. Acad. J. Pharm. 6, 149?157.
  7. Blagojevic S. N., Blagojevic S. M., Pejic N. D. (2016). Performance and Efficiency of Anionic Dishwashing Liquids with Amphoteric and Nonionic Surfactants, J Surfact Deterg 19(2):363?372.
  8. Blagojevic S. M., Pejic D., Blagojevic S. N. (2017). Synergism and Physicochemical Properties of Anionic/Amphoteric Surfactant Mixtures with Nonionic Surfactant of Amine Oxide Type, Russian Journal of Physical Chemistry A, 91 (13): 2690?2695.
  9. Bouassida M., Fouratil N., Ghazala I., Ellouze-Chaabouni S., Ghribi D. (2018). Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: Compatibility study with detergent ingredients and washing performance, Engineering in Life Sciences, 18 (1): 70?77.
  10. Bratovcic A., Nazdrajic S., Odobasic A., Sestan I., The Influence of Type of Surfactant on Physicochemical Properties of Liquid Soap, Int. J. Mater. Chem. 2018, 8(2): 31-37.
  11. Chidi O., Adebayo I. V., (2018). Determination of Critical Micelle Concentration and Thermodynamic Evaluations of Micellization of GMS, Mod Chem Appl, 6:2.
  12. Cornwel P. A. (2018). A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments, International Journal of Cosmetic Science, 40, 16?30.
  13. Czajka A, Hazell G, Eastoe J (2015). Surfactants at the Design Limit, Langmuir, 31, 8205-8217.
  14. E. Otzen (2017). Biosurfactants and surfactants interacting with membranes and proteins: Same but different? Biochimica et Biophysica Acta (BBA) - Biomembranes, 1859(4): 639-649.
  15. El-Shattory Y. A., Elmawla A. G., El-Hamide H. A. A. (2018). Improved Manual Dishwashing Liquid Detergent Compared to that Produced by Multinational Companies in Egyptian Market, Egypt. J. Chem. 61, (4) 651 - 659.
  16. Fern?ndez-Serrano M., Jurado E., Fern?ndez-Arteaga A., R?os F., Lechuga M. (2014). Ecotoxicological Assessment of Mixtures of Ether Carboxylic Derivative and Amine-Oxide-Based Non-ionic Surfactants on the Aquatic Environment, J Surfact Deterg, 17: 1161-1168.
  17. Garcia M. T., Kaczerewska O., Ribosa I., Brycki B., Materna P., Drgas M. (2016). Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: effect of the spacer on their ecological properties, Chemosphere, 154, 155-160.
  18. Gwiazdowska D. & Wieczorek D. 2014. Antimicrobial properties of liquid soaps with declared antibacterial effect, Polish Journal of Cosmetology, 17: 78-82.
  19. Hassan S., Rehman H. U., Saddique A. (2017). Physiochemical Analysis of Different Soap and Shampoo Collected from the Different Local Market of District Karak, KP, Pakistan, World Applied Sciences Journal, 35 (9) 2012-2014.
  20. Kosmowska N., Łuczak W., Gwiazdowska D., Michocka K., Wieczorek D. (2014) Antibacterial activity of chemical compounds used as surfactants, TOWAROZNAWCZE PROBLEMY JAKOŚCI 2(39): 142 - 149
  21. Lavkush Bhaisare M, Pandey S, Shahnawaz Khan M, Talib A, Wu HF. (2015). Fluorophotometric determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants with carbon dots via Stokes shift, Talanta, 132, 572?578.
  22. Maurad Z.A., Idris Z., Ghazali R. (2017). Performance of Palm-Based C16/18 Methyl Ester Sulphonate (MES) in Liquid Detergent Formulation, J. Oleo Sci. 66, (7) 677-687.
  23. Mendes Canguss? ?., Loiola Vasconcelos T. Y., Feitosa Medeiros D. P., Martins Mesquita R. J., Bezerra Sampaio Marques F. V., de Vasconcelos Saraiva R. L., ?vilo do Nascimento A. (2016). The development of different formulations containing 2% chlorhexidine digluconate and preliminary evaluation of the stability of the formulations, World Journal of Farmaceutical Research, Volume 5, Issue 5, 139-147.
  24. Mitrinova Z., Tcholakova S., Denkov N. (2018). Control of surfactant solution rheology using medium-chain cosurfactants, Colloids and Surfaces A, 537, 173?184.
  25. Mortensen HG, Madsen JK, Andersen KK, Vosegaard T, Deen GR, Otzen DE, Pedersen JS (2017). Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS, Biophys J, 113(12):2621-2633.
  26. Nguyen T., Nguyen A. V., Evans G. M. (2015). Interfacial Water Structure at Surfactant Concentrations below and above the Critical Micelle Concentration as Revealed by Sum Frequency Generation Vibrational Spectroscopy, J. Phys. Chem. C, 119, 15477−15481.
  27. Nguyen L. A. T. (2015). Adsorption of non-ionic surfactants onto ultrafiltration membranes in aqueous and organic solutions., Von der Fakult?t II ?Mathematik und Naturwissenschaftender Technischen Universit?t Berlinzur Erlangung des akademischen Grades, genehmigte Dissertation, Berlin
  28. Odunze U., O?Brien F., Godfrey L., Sch?tzlein A., Uchegbu Ij. (2019). Unsual enalpy driven self assembly at room temperature with chitosan amphiphiles, Pharm. Nanoteh., 7, 57-71.
  29. Osei-Bonsu K., Shokri N., Grassia P. (2015). Foam stability in the presence and absence of hydrocarbons: From bubble- to bulk-scale, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481: 514-526.
  30. R?os F., Fern?ndez-Arteaga A., Lechuga M., Fern?ndez-Serrano M. (2018) Ecotoxicological Characterization of Surfactants and Mixtures of Them. In: Bidoia E., Montagnolli R. (eds) Toxicity and Biodegradation Testing. Methods in Pharmacology and Toxicology. Humana Press, New York, NY, 311-330.
  31. Santos M. S., Tavares F. W., Biscaia Jr E. C. (2016). Molecular thermodynamics of micellization: micelle size distributions and geometry transitions, J. Chem. Eng. vol. 33 3, 515-523.
  32. Sheng Y., Wu X., Lu S., Li C. (2016). Experimental Study on Foam Properties of Mixed Systems of Silicone and Hydrocarbon Surfactants, J Surfact Deterg., 19: 823-831.
  33. Tehrani-Bagha A. R., Holmberg K., Ginkel G. C., Kean M. (2015) Cationic gemini surfactants with cleavable spacer: Chemical hydrolysis, biodegradation, and toxicity, J. Colloid Interf. Sci., 431: 72?79.
  34. Toofan M. & Toofan J. (2015). A Brief Review of the Cleaning Process for Electronic Device Fabrication, Developments in Surface Contamination and Cleaning. Wet and Dry Cleaning Methods, 185-2012.
  35. Vijayakumar S. & Saravanan V. (2015). Biosurfactants-Types, Sources and Applications, Research Journal of Microbiology, 10 (5): 181-192.
  36. Wieczorek D., Kwaśniewska D., Staszak K., Dobrowolski A. (2017). Effect of amphoteric surfactant on surface and antimicrobial properties of liquid soap, Current Trends in Commodity Science: Cosmetic Products Development, 138-150.
  37. Yuan C. L., Xu Z. Z., Fan M. X., Liu H. Y., Xie Y. H., Zhu T., (2014). Study on characteristics and harm of surfactants, J. Chem. Pharm Res. 6(7):2233-2237
  38. Zhi, Li Q., Li Y., Sun Y. (2014). Self-aggregation and Antimicrobial Activity of Saccharide-cationic Surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 456: 231-237.

[S. Nazdrajic and A. Bratovcic (2019); THE ROLE OF SURFACTANTS IN LIQUID SOAPS AND ITS ANTIMICROBIAL PROPERTIES Int. J. of Adv. Res. 7 (Dec). 501-507] (ISSN 2320-5407). www.journalijar.com

Amra Bratovcic
Department of Physical Chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Univerzitetska 8, 75000 Tuzla, Bosnia and Herzegovina.


Article DOI: 10.21474/IJAR01/10175      
DOI URL: http://dx.doi.org/10.21474/IJAR01/10175