SHAPE AND TOPOLOGICAL OPTIMIZATION OF A NONLINEAR ELLIPTICAL PROBLEM
- Universite Gamal Abdel Nasser de Conakry, FST, BP 1147 Conakry, Guinea.
- Universite Juluis Nyerere de KanKan, Guinea, departement de Mathematiques.
- Equipe de recherche: Analyse Non-Lineaire et Geometrie/UAD.
- Laboratoire dInformatique, de Mathematiques et Applications (LIMA), UFR SATIC, UniversiteAlioune Diop de Bambey, BP 30 Bambey, Senegal.
- Laboratoire de Mathematiques de la Decision et dAnalyse Numerique (L.M.D.A.N).
- Abstract
- Keywords
- Cite This Article as
- Corresponding Author
In this work, let us deal with existence and derivation results in shape optimization. It should be noted that a shape optimization problem does not generally have a solution with only its initial data. To get around the non-existence of solution, we impose geometric order restrictions (i.e. volume type) and we work with the open class checking the cone property to obtain existence. On the other hand, we determine the shape derivative using the Lagrange method. And then we establish the topological derivative using the minmax method.
[Malick Fall, Bakary Kourouma, Mouhamadou Baidy Dia and Mame Gor Ngom (2025); SHAPE AND TOPOLOGICAL OPTIMIZATION OF A NONLINEAR ELLIPTICAL PROBLEM Int. J. of Adv. Res. (Feb). 1347-1359] (ISSN 2320-5407). www.journalijar.com
Université Gamal Abdel Nasser de Conakry, FST, BP 1147 Conakry, Guinea
Guinea