30Jun 2025

CYCLOTOMIC COSETS IN THE RING

  • Department of Mathematics Govt. College Siwani (Bhiwani) (Haryana) India.
  • Abstract
  • Keywords
  • Cite This Article as
  • Corresponding Author

We consider the ringR_(2p^n q^m )=GF(l)[x]/(x^(2p^n q^m )-1) where p,q,l are distinct odd primes,l is a primitive root both modulo p^n and q^m such that gcd(p^n),(q^m))d.Explicit expressions for all the 2(m n d+m+n+1) Cyclotomic Cosets areobtained, p does not divide q-1 .


[Ranjeet Singh (2025); CYCLOTOMIC COSETS IN THE RING Int. J. of Adv. Res. (Jun). 1268-1269] (ISSN 2320-5407). www.journalijar.com


Dr. Ranjeet Singh
CBLU Bhiwani
India