20Jan 2017


  • Dept. of Mathematics, College of Science, University of Baghdad. Dept. of Mathematics, College of Science, Al-Mustansiriya University.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Let R be a commutative ring with identity and M be a unitary of R-module. A proper submoduleNofM is called aquasi-prime if whenevera.b x?N ; a,b?R ,x?M, implies that either ax?N or bx?N. In this paper we say that N is a nearly quasi prime, if whenever abx?N ; a,b?R,x?M, implies that either ax?N+J(M)or bx?N+J(M), where J(M)is the Jacobson radical of M. Some of the properties of this concept will be investigated. Some characterizations of nearly quasi prime submodules will be given, and we show that under some assumptions quasi prime submodules and nearly quasi prime submodules are coincide.

  1. Birkenmeier C.F.1976 .On The Cancellation of Quasi –Injective Modules .Commutative InAlgebra, 49(2), pp: 101-109.
  2. Behboodi, M. Kooly. H.2004.Weakly Prime Modules. Vietnam J Mathematics, 32(3), pp: 303-317.
  3. Abdul- Razak H.M., 1999. Quasi-prime Modules and Quasi-prime Submodules. M.D. Thesis, University of Baghdad.
  4. KursatHakan Oral.2010.Pseudo Prime and Pseudo IrrducibleSubmodule.World Applied Sciences Journal, 9(12),pp :1350-1352.
  5. , 32B (2),pp :645-651.
  6. P.Lu , .1999 . The ZariskiTopologu on the prime Spectum of aModule, HoustomJ.Math. 25(3) , 417-432.
  7. Larsen M.D. and Mccarlthy  J.1971. Multiplicative Theory of Ideals ,Academic Press, New York and London
  8. Kasch, F.1982. Modules and Rings , Academic Press Ins, London .
  9. Wisbauer, R 1991.Foundations of Modules and Rings Theory, Gonrdan and Berach Reading.
  10. Naoum, A.G. 1995. Regular MultiplictionModules.Periodica Mathematics Hungarica Vol. 31(2),pp.155-162.
  11. MajidMohammed ,AbdGhafur Bin Ahmad , .2013. On some properties of hollow and hollow dmension modules. Pure and Applied MathenaticsJournrl. 2(15), 156-161.
  12. Behboodi, M. Karamzadeh, O.A.S, and Koohy,H.2004.Modules Whose Certain Submodules Are Prime, Vietnam Journal of Mathematics ,32:2,303-317.
  13. Byrd, K.A.,1972. Rings Whose Quasi- Injective Modules Are Injective, Proceedings of the American Mathematical Society ,Volume33,Number 2,June
  14. Fieldhouse, D.J., 1969.Pure Theories. Math. Ann. 184,1-18.
  15. Zelmanowitz, J.,1973. Regular Modules .Trans.Amer.Math.Soc.,163,341-355.
  16. Naoum, A.G. and Yaseen, S.M., 1995. The Regular Submodules of a Module.AnnalesSocietatis Mathematics Polonas.
  17. Zhu Zhanmin ,2010. Pseudo FQ- injective Modules. Dep. Mathematics ,Jiaxing
  18. Al- Ahamadi1,N.Er2,S.K.Jain3, 2003. Modules Which are Invariant under Monomorphisms of their Injective Hulls .Ohio University, Athens,Ohio.
  19. K. Nicholson , 1975 . Semirgular Modules and rings ,Canad . J. Math. 180 , 1105-1120.
  20. W. Han , S.J Chio, 2009. Generaliation of the quasi – inlectivemodules ,comm. Korean , 811-813. Math.soc. Vol.10. NO.1
  21. Mehdi S.A. and Samir M.S.,2012.IC-Pseudo- Injective Modules. International Journal of Algebra ,Vol.6,no. 6,255-264.
  22. Mohammed B.H, 2016. Nearly SemiprimeSubmodules .M.Sc. Thesis ,College of Science ,University of Baghdad.
  23. Dauns , J. ,1980. Prime Modules and One- Sided Ideals in \"Ring Theory and Algebra III\", (Proceeding of the Third Oklahoma Conference),B.R.
  24. Quasi-Injective Modules, Comm .Korean Math. Soc. Vol.10.No.1,811-813.
  25. Nuhad S. and Adwia J.A.,2015. Nearly Prime Submodules .International J. of Advanced Scientific and Technical Research .Vol.6,2246-9954.

[Nuhad S. AL?Mothafar and Adwia J. Abdil AL ?khalik. (2017); NEARLY QUASI PRIME SUBMODULES Int. J. of Adv. Res. 5 (1). 170-180] (ISSN 2320-5407). www.journalijar.com

Nuhad Salim Al-Mothafar
Dept. of Mathematics, College of Science, University of Baghdad


Article DOI: 10.21474/IJAR01/2734       DOI URL: http://dx.doi.org/10.21474/IJAR01/2734

Share this article