10Feb 2019

TRANSFORMATION OF NATURAL ANALCIME AND PHILLIPSITE DURING THEIR HYDROTHERMAL RECRYSTALLIZATION INTO ZEOLITES A AND X.

  • Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The objective of the present work was to study transformation of Georgian natural zeolites, analcime and phillipsite, during their recrystallization in the aim to obtain zeolites A and X, widely used for adsorption, separation, ion exchange and catalysis. It is found that phase-pure zeolite NaA (Na11.25(25) (K,?Ca,?Mg)0.7(1) (Al11.95(25)Si12.3(3)O48).18H2O) can be prepared in the form of cubic/rhombus crystallites with uniform micrometric (3-5 μm) dimensions by hydrothermal crystallization (95oC) of aged (72 hr) at room temperature gel (4.5Na2O: 0.45Al2O3: 1SiO2: 178H2O) obtained from natural analcime, treated with hydrochloric acid before suspending in water and mixing with sodium hydroxide. Phase-pure zeolite NaX (|Na66(3) [K,?Ca,?Mg,?Cu,?Zn]12(1) (H2O)248(10)| (Al78(3)Si114(4)O384)) with specific surface area of 589 m2/g and total pore volume of 0.578 cm3/g can be prepared in the form of octahedral crystallites with uniform micrometric (2-7 μm) dimensions by hydrothermal crystallization (95oC) of aged (96 hr) at room temperature gel (2.9Na2O: 0.26Al2O3: 1SiO2: 150H2O) obtained from water suspension of natural phillipsite, treated with hydrochloric acid and mixed with sodium hydroxide. The resulting zeolites in their characteristics are competitive with commercially available materials.


  1. Abdmeziem, K. and Siffert, B. (1994). Synthesis of large crystals of ZSM-5 zeolite from smectite clay mineral. Applied Clay Science, 8: 437-447.
  2. Abdullahi, T., Harun, Z. and Othman, M.H.D. (2017). A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Advanced Powder Technology, 28: 1827-1840.
  3. Alaba, P.A., Sani, Y.M., Mohammed, I.Y., Abakr, Y.A. and Daud, W.M.A.W. (2017). Synthesis and characterization of sulfated hierarchical nanoporous faujasite zeolite for efficient transesterification of shea butter. J. Clean. Prod., 142: 1987-1993.
  4. Alkan, M., Hopa, ?., Yilmaz, Z. and G?ler, H. (2005). The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous Mesoporous Mater., 86: 176-184.
  5. Anuwattana Jr., R., Balkus, K.J., Asavapisit, S. and Khummongkol, P. (2008). Conventional and microwave hydrothermal synthesis of zeolite ZSM-5 from the cupola slag. Microporous and Mesoporous Materials, 111: 260-266.
  6. Anuwattana, R. and Khummongkol, P. (2009). Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge. Journal of Hazardous Materials, 166: 227-232.
  7. Babajide, O., Musyoka, N., Petrik, L. and Ameer, F. (2012). Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catal. Today, 190: 54-60.
  8. Bacakova, L., Vandrovcova, M., Kopova, I. and Jirka I. (2018). Applications of zeolites in biotechnology and medicine ? a review. Biomaterials Sci., 6: 974-989.
  9. Baerlocher, Ch., McCucker, L.B. and Olson, D.H. (2007) Atlas of Zeolite Framework Types. Sixth revised Edition. Elsevier, Amsterdam, pp. 142-143.
  10. Bagherzadeh, M. and Zare, M. (2012). Synthesis and characterization of NaY zeolite-encapsulated Mn-hydrazone Schiff base: an efficient and reusable catalyst for oxidation of olefins. Journal of Coordination Chemistry, 65(22): 4054-4066.
  11. Balkus, K.J. and Ly, K.T. (1991). The preparation and characterization of an X-type zeolite. An experiment in solid state chemistry. Journal of Chemical Education, 68(10): 875-877.
  12. Bastani, D., Esmaeili, N., Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry. 19: 375-393.
  13. Belviso, C., Cavalcante, F., Lettino, A. and Fiore, S. (2013). A and X-type zeolites synthesised from kaolinite at low temperature. Appl. Clay Sci., 80-81: 162-168.
  14. Bukhari, S.S., Behin, J., Kazemian, H. And Rohani, S. (2015). Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel,140: 250-266.
  15. Chen, D., Hu, X., Shi, L., Cui, Q., Wang, H. and Yao, H. (2012). Synthesis and characterization of zeolite X from lithium slag. Appl. Clay Sci., 59-60: 148-151.
  16. Chen, Y., Xu, T., Xie, C., Han, H., Zhao, F., Zhang, J., Song, H. and Wang, B. (2016). Pure zeolite Na-P and Na-X prepared from coal fly ash under the effect of steric hindrance. Chem. Technol. Biotechnol.,91: 2018-2025.
  17. Christidis, G.E., Paspaliaris, I. and Kontopoulos, A. (1999). Zeolitisation of perlite fines: mineralogical characteristics of the end products and mobilization of chemical elements. Applied Clay Science, 15: 305-324.
  18. Cui, Q., Zhou, Y., Wei, Q., Yu, G. and Zhu, L. (2013). Performance of Zr- and P-modified USY-based catalyst in hydrocracking of vacuum gas oil. Fuel Processing Technology, 106: 439-446.
  19. Cundy, C.S. and Cox, P.A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Mesopor.Mat., 82: 1-78.
  20. Dolaberidze, N.M., Tsitsishvili, V.G., Mirdzveli, N.A. and Nijaradze, M.O. (2017). Synthesis of LTA type zeolites from Georgian clinoptilolite. Chemistry, Physics and Technology of Surface (Ukraine), 8: 346-350.
  21. Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D. and Sels, B.F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. , 45: 584?611.
  22. Farzaneh, F., Oskooie, M.K. and Nejad, M.M.A. (1989). The synthesis of zeolites A, X and HS from natural Iranian kaolinite and the study of the transformation of zeolites X to HS and zeolites Y to P by X-ray diffraction and scanning electron microscopy. Journal of Sciences ? Islamic Republic of Iran, 1: 23-28.
  23. Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J.-H., Wang, J., Li, Y., Corma, A., Xu, R. and Yu, J. (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 351: 1188?1191.
  24. Flanigen, E.M., Khatami, H. and Szymanski, H.A. (1971). Infrared structural studies of zeolite frameworks. Chem. Ser.,101: 201-229.
  25. Garshasbi, V., Jahangiri, M. and Anbia, M. (2017). Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Appl. Surf. Sci., 393: 225-233.
  26. Georgiev, D., Petrov, I., Mihalev, T., Peychev, I., Gradinarov, I. and Kolchakova, G, (2014). Granulation of natural zeolite. Scientific, 53: 51-55.
  27. Gougazeh, M. and Buhl, J.-Ch. (2014). Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin. Journal of the Association of Arab Universities for Basic and Applied Sciences, 15: 35-42.
  28. Hui, K.S. and Chao, C.Y.H. (2006). Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents. Journal of Hazardous Materials, 137(1): 401-409.
  29. Hu, T., Gao, W., Liu, X., Zhang. Y. and Meng, C. (2017). Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash. Royal Society Open Science, 4(10): 170921-170934.
  30. Inada, M., Eguchi, Y., Enomoto, N. and Hojo, J. (2005). Synthesis of zeolites from coal fly ashes with different silica-alumina composition. Fuel, 84: 299-304.
  31. Izidoro, J.D.C., Fungaro, D.A., Abbott, J.E. and Wang, S. (2013). Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel, 103: 827-834.
  32. Jiang, Z., Yang, J., Ma, H., Ma, X. and Yuan, J. (2016). Synthesis of pure NaA zeolites from coal fly ashes for ammonium removal from aqueous solutions. Clean Technol. Environ. Policy,18: 629-637.
  33. Juan, R., Hernandez, S., Andres, J.M. and Ruiz, C. (2009). Ion exchange uptake of ammonium in wastewater from a sewage treatment plant by zeolitic materials from fly ash. Journal of Hazardous Materials, 161: 781-786.
  34. Kazemimoghadam, M. and Mohammadi, T. (2006). Preparation of NaA zeolite membranes for separation of water/UDMH mixtures. Separation and Purification Technologies, 47: 173-178.
  35. Li, C., Zhong, H., Wang, S., Xue, J. and Zhang, Z. (2015). Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J. Ind. Eng. Chem., 23: 344-352.
  36. Lin, D., Xu, X., Zuo, F. and Long, Y. (2004). Crystallization of JBW, CAN, SOD and ABW type zeolite from transformation of meta-kaolin. Microporous and Mesoporous Materials, 70: 63-70.
  37. Li, Y., Li, L. and Yu, J. (2017) Applications of Zeolites in Sustainable Chemistry. Chem, 3: 928-949.
  38. Ltaief, O.O., Siffert, S., Fourmentin, S. and Benzina, M. (2015). Synthesis of faujasite type zeolite from low grade Tunisian clay for the removal of heavy metals from aqueous waste by batch process: Kinetic and equilibrium study. Comptes Rendus Chimie, 18: 1123-1133.
  39. Machado, N.R.C.F. and Miotto, D.M.M. (2005). Synthesis of Na-A and X zeolites from oil shale ash. Fuel, 84: 2289-2294.
  40. Ma, D., Wang, Z., Guo, M., Zhang, M. and Liu, J. (2014). Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application. Waste Manag., 34: 2365-2372.
  41. Manadee, S., Sophiphun, O., Osakoo, N., Supamathanon, N., Kidkhunthod, P., Chanlek, N., Wittayakun, J. and Prayoonpokarach, S. (2017). Identification of potassium phase in catalysts supported on zeolite NaX and performance in transesterification of Jatropha seed oil. Fuel Process. Technol., 156: 62-67.
  42. Masoudian, S.K., Sadighi, S. and Abbasi, A. (2013). Synthesis and characterization of high aluminum zeolite X from technical grade materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8(1): 54-60.
  43. Melo, C.R., Riella, H.G., Kuhnen, N.C., Angioletto, E., Melo, A.R., Bernardin, A.M., da Rocha, M.R. and da Silva, L. (2012). Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater. Sci. Eng., B177: 345-349.
  44. Milenkovic, J., Hrenovicm J., Matijasevic, D., Niksic, M., and Rajic, N. (2017). Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli Environmental Science and Pollution Research, 24: 20273?20281.
  45. Mintova, S., Jaber, M., and Valtchev, V. (2015). Nanosized microporous crystals: emerging Chem. Soc. Rev., 44: 7207?7233.
  46. Montalvo, S., Guerrero, L., Borja, R., S?nchez, E., Mil?n, Z., Cort?s, I. and Rubias, M. A. (2012). Application of natural zeolites in anaerobic digestion processes: A review. Applied Clay Science, 58: 125-133.
  47. Morayama, N., Yamamoto, H. and Shibata, J. (2002). Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. International Journal of Mineral Processing, 64: 1-17.
  48. Mozgawa, W., Sitarz, M. and Rokita, M. (1999). Spectroscopic studies of different aluminosilicate structures. Journal of Molecular Structure, 511-512: 251-257.
  49. Musyoka, N.M., Ren, J., Langmi, H.W., North, B.C. and Mathe, M. (2015). A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives. Int. J. Hydrog. Energy, 40: 12705-12712.
  50. Ogura, M., Kawazu, Y., Takahashi, H. and Okubo, T. (2003). Aluminosilicate species in the hydrogel phase formed during the aging process for the crystallization of FAU zeolite. Chem. Mater., 15: 2661-2667.
  51. Park, J., Ahmed Ali, S., Alhooshani, K., Azizi, N., Miyawaki, J., Kim, T., Lee, Y., Kim, H.S., Yoon, S.H. and Mochida, I. (2013). Mild hydrocracking of 1-methyl naphthalene (1-MN) over alumina modified zeolite. Journal of Industrial and Engineering Chemistry, 19: 627-632.
  52. Purnomo, C.W., Salim, C. and Hinode, H. (2012). Synthesis of pure Na?X and Na?A zeolite from bagasse fly ash. Microporous Mesoporous Mater., 162: 6-13.
  53. Qian, T. and Li, J. (2015). Synthesis of Na-A zeolite from coal gangue with the in-situ crystallization technique. Adv. Powder Technol., 26: 98-104.
  54. Querol, X., Moreno, N., Umana, J.C., Alastuey, A., Hernandez, E. and Lopez-Soler, A. (2002). Synthesis of zeolite from coal fly ash: an overview. International Journal of Coal Geology, 50: 413-423.
  55. R?os Reyes, C.A., Williams, C.D. and Castellanos Alarc?n, O.M. (2010). Synthesis of zeolite LTA from thermally treated kaolinite. Revista Facultad de Ingenieria Universidad de Antioquia, 2010: 30-41.
  56. San Crist?bal, A.G., Castell?, R., Mart?n Luengo,M.A. and Vizcayno, C. (2010). Zeolites prepared from calcined and mechanically modified kaolins: A comparative study. Applied Clay Science, 49: 239-246.
  57. Sanhueza, V., Kelm, U., Cid, R. and L?pez-Escobar, L. (2004). Synthesis of ZSM-5 from diatomite: a case of zeolite synthesis from a natural material. Journal of Chemical Technology and Biotechnology, 79: 686-690.
  58. Sapawe, N., Jalil, A.A., Triwahyono, S., Shah, M.I.A., Jusoh, R., Salleh, N.F.M., Hameed, B.H. and Karim, A.H. (2013). Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chemical Engineering Journal,229: 388-398.
  59. Shawabkeh, R., Al-Harahsheh, A., Hami, M. and Khlaifat, A. (2004). Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel, 83: 981-985.
  60. Shigemoto, N., Hayashi, H. and Miyaura, K. (1990). Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. Journal of Materials Research, 28: 4781-4786.
  61. Shoumkova, A. and Stoyanova, V. (2013). SEM?EDX and XRD characterization of zeolite NaA, synthesized from rice husk and aluminium scrap by different procedures for preparation of the initial hydrogel. Journal of Porous Materials, 20(1): 249-255.
  62. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouqu?rol, J. and Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem., 57: 603-612.
  63. Su, S., Ma, H. and Chuan, X. (2016). Hydrothermal synthesis of zeolite A from K-feldspar and its crystallization mechanism. Adv. Powder Technol., 27: 139-144.
  64. Tanaka, H., Matsumura, S., Furusawa, S. and Hino, R. (2003). Conversion of coal fly ash to Na-X zeolites. Journal of Materials Science Letters, 22: 323-325.
  65. Terzano, R., Spagnuoloa, M., Medici, L., Tateo, F. and Ruggiero, P. (2005). Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation. Applied Clay Science, 29: 99-110.
  66. Tsitsishvili, , Dolaberidze, N., Mirdzveli, N. and Nijaradze, M. (2016a). MOR type synthetic zeolite material. Proceedings of Georgian National Academy of Sciences, chemical series, 42(1): 35-39.
  67. Tsitsishvili, , Dolaberidze, N., Alelishvili, M., Nijaradze, M. and Mirdzveli, N. (2016b). New generation zeolitic adsorbers. Proceedings of Georgian National Academy of Sciences, chemical series, 42(3): 276-280.
  68. Tsitsishvili, V., Dolaberidze, N., Alelishvili, M., Tsintskaladze, G., Sturua, G., Chipashvili, D., Nijaradze, M. and Khazaradze, N. (1998). Adsorption and thermal properties of zeolitic rocks from newly investigated deposit plots in Georgia. Georgian Eng. News, 2(6): 61-65.
  69. Ugal, J.R., Hassan, K.H. and Ali, I.H. (2010). Preparation of type 4A zeolite from Iraqi kaolin: characterization and properties measurements, J. Assoc. Arab Univ. Basic Appl. Sci., 9: 2-5.
  70. Volli, V. and Purkait, M.K. (2015). Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. J. Hazard. Mater., 297: 101-111.
  71. Wang, C., Zhou, J., Wang, Y., Yang, M., Li, Y. And Meng, C. (2013). Synthesis of zeolite X from low-grade bauxite. Chem. Technol. Biotechnol,88: 1350-1357.
  72. Yao, G., Lei, J., Zhang, X., Sun, Z. and Zheng, S. (2018). One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials, 11: 906-920.
  73. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S. and Xi, Y.Q. (2015). A comprehensive review on the applications of coal fly ash. Earth Sci. Rev.,141: 105-121.
  74. Zhang, X., Tang, D., Zhang, M. and Yang R. (2013). Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals. Powder Technology, 235: 322-328.

[Vladimer Tsitsishvili, Nanuli Dolaberidze, Nato Mirdzveli, Manana Nijaradze, Zurab Amiridze, Nino Sinauridze, Tekla Kapanadze and Ketevan Virsaladze. (2019); TRANSFORMATION OF NATURAL ANALCIME AND PHILLIPSITE DURING THEIR HYDROTHERMAL RECRYSTALLIZATION INTO ZEOLITES A AND X. Int. J. of Adv. Res. 7 (Feb). 219-230] (ISSN 2320-5407). www.journalijar.com


Nato Mirdzveli
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University

DOI:


Article DOI: 10.21474/IJAR01/8479      
DOI URL: http://dx.doi.org/10.21474/IJAR01/8479