02Oct 2019


  • Department Of Microbiology, Career College, Govindpura, BHEL, Bhopal-462023(M.P), India.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Background: Pseudomonas fluorescens is an ubiquitous, Gram-negative, bar molded, mono whipped bacterium, equipped for causing genuine diseases in safe traded off host. It is a standout amongst the most troublesome multidrug safe microorganisms equipped for delivering metallo-β-lactamase (MBL). This examination was gone for assessing the expanding commonness of multidrug opposition profile and MBL generation in P. fluorescens detached from healing center of CIMS, Bhopal India . Result: In this examination, a sum of 600 examples were haphazardly gathered from the doctor\'s facility. They were tried for the nearness of P. fluorescens on cetrimide agar, watching the agar plates for development and pigmentation. Encourage biochemical test and sub-atomic investigation were done to additionally affirm their way of life as P. fluorescens. Conclusion: From this investigation, it was presumed that multidrug safe P. fluorescens is available in the hospital. The level of opposition was high in both shade and non-color creating disconnects, however the obstruction of non-color delivering P. fluorescens was higher. Medications of decision to be viewed as first for the therapy of infections produced by multidrug safe P. fluorescens are gentamicin, ofloxacin, ciprofloxacin and meropenem.

  1. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC. Color Atlas and Textbook of Diagonostic Microbiology. 6th ed. Philadelphia, USA: Lippincott Raven Publishers; 1997.
  2. Choudhary V, Pal N, Hooja S. Prevalence and antibiotic resistance pattern of Metallo‑β‑lactamase‑producing Pseudomonas aeruginosa isolates from clinical specimens in a tertiary care hospital. J Mahatma Gandhi Inst Med Sci 2019;24:19‑
  3. Bradford PA. Extended spectrum ?-lactamases in the 21st century: The characterization, epidemiology and the detection of this important resistance threat. Clin. Microbiol. Rev 2001; 14: 933-951.
  4. Prashant Durwas Peshattiwar and Basavaraj Virupaksappa Peerapur. ESBL and MBL Mediated Resistance in Pseudomonas Aeruginosa. Journal of Clinical and Diagnostic Research. 2011 December, Vol-5(8): 1552-15541552 1552.
  5. Brittan S. Scales, Robert P. Dickson, John J. LiPuma, Gary B. Huffnagle. Microbiology, Genomics, and Clinical Significance of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans.October 2014 Volume 27 Number 4 Clinical Microbiology Reviews p. 927?948.
  6. Jaykumar S, Appalraju B. The prevalence of multi and pan drug resistant Psuedomonas aeruginosa with respect to ESBL and MBL in a tertiary care hospital. Indian J Pathol Microbiol 2007; 50 (4) : 922-25. [5] Walsh T R., Toleman M A., Poirel L Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clinical Microbiology Reviews Apr 2005; 306-25.
  7. Maltezou, H. C. (2009). Metallo-beta-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int J Antimicrob Agents, 33(5), 405, 1?7.
  8. Hammami S, Boutiba‑Ben Boubaker I, Ghozzi R, Saidani M, Amine S, Ben Redjeb S, et al. Nosocomial outbreak of imipenem‑resistant Pseudomonas aeruginosa producing VIM‑2 metallo‑β‑lactamase in a kidney transplantation unit. Diagn Pathol 2011;6:106.
  9. Jesudason, M. V., Kandathil, A. J. & Balaji, V. (2005). Comparison of two methods to detect carbapenemase & metallo-β- lactamase production in clinical isolates. Indian J Med Res, 121, 780-783.
  10. Brown, V. I. & Lowbury, E. J. L. (1965) Use of an improved cetrimide agar medium & of culture methods for Pseudomonasfluorescence . J Clin Pathol, 18, 752
  11. NCBI,(2007).Taxonomy.Browser.http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/accessed 4/9/2014.
  12. Livermore, D. M. (1984). Penicillin-binding proteins, porins & outer-membrane permeability of carbenicillin-resistant & ?susceptible strains of Pseudomonas fluorescence . J Med Microbiol, 18, 261?200.
  13. Livermore D. (2001). Of Pseudomonas, porins, pumps & carbapenems. J Antimicrob Chemother, 47, 247?50.
  14. S & Dedman M. D (1964) pigmentation variants of pseudomonas fluorescence . J Bacteriol, 88(2), 273-278.
  15. Kumarasamy, K. K., Toleman, M. A. & Walsh, T. R. (2010).\"Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, & epidemiological study\".?Lancet Inct Dis,?10?(9), 597?602.
  16. D?Costa, V. M., King, E. C., Kalan, L., Morar, M., Sung, W. L., Schwarz, C., Froese, D., Zazula, G., Debruyne, R., Camels, F., Golding, B. G., Poinar, H. N. & Wright, G. D. (2011). Antibiotic Resistance is Ancient. Nature 10388:10.1038.
  17. Magiorakos, A. P. (2011). \'Multidrug- Resistant (MDR), Extensively Drug Resistant (XDR) & Pandrug-1 Resistant (PDR) Bacteria in Healthcare Settings. Expert Proposal for a Standardized International Terminology\'.
  18. Gad, G. F., El- Domany, R. A., Zaki, S. & Ashour, H. M. (2007). ?Characterization of Pseudomonas Fluorescence Isolated from Clinical and Environmental Samples in Minia, Egypt: Prevalence, Antibiogram and Resistance Mechanisms,? J Antimicrob Chemother, (60), 1010? 1017.

[ Bhupendra Prasad, Reena Antony, Jitendra Malviya, Ashi Shroti and Shikha Shrivastava. (2019); MULTIDRUG RESISTANCE PROFILE AND METALLO-β-LACTAMASE PRODUCTION IN PSEUDOMONAS FLUORESCENS ISOLATED FROM HOSPITAL. Int. J. of Adv. Res. 7 (10). 237-243] (ISSN 2320-5407). www.journalijar.com

Ashi Shroti


Article DOI: 10.21474/IJAR01/9826       DOI URL: http://dx.doi.org/10.21474/IJAR01/9826

Share this article